
Coalgebraic Automata and Canonical
Models of Moore Machines

Brendan Cordy

Department of Mathematics and Statistics,

McGill University, Montréal

Québec, Canada

August, 2008

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements of the degree of

Master of Science

Copyright c© Brendan Cordy, 2008

Abstract

We give a concise introduction to the coalgebraic theory of Moore machines, and

building on [6], develop a method for constructing a final Moore machine based on

a simple modal logic. Completeness for the logic follows easily from the finality

construction, and we furthermore show how this logical framework can be used for

machine learning.

i

ii

Résumé

Nous présentons une brève introduction à la théorie coalgèbrique des machines

Moore et, en ajoutant à [6], nous développons une méthode pour la construction

d’une machine Moore finale. Cette méthode est fondée sur une simple logique

modale dont la complétude résulte facilement de la construction de finalité. De plus,

nous démontrons comment notre cadre logique peut être utilisé pour l’apprentissage

automatique.

iii

iv

Acknowledgments

I would like to thank my friend and supervisor, Prakash Panangaden, for his depth

of enthusiasm and patience. His guidance and encouragement transformed what

began as an aside into the core of this work.

I am forever indebted to my parents for their unconditional encouragement. It is to

them that this work is dedicated.

v

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgments v

Introduction 1

1 Categories and Coalgebras 3

2 Bisimulation 9

3 Machines as Coalgebras 17

4 Logic and Finality 29

5 Machine Reconstruction 43

Conclusion 51

vii

viii

Introduction

The coalgebraic theory of automata has seen a burst of activity in recent years,

spearheaded by the work of Rutten [15], Kurz [9] [11], and Jacobs [7]. The de-

scription of many varieties of automata in terms of coalgebras for an endofunctor

is extremely natural, and bisimulation, which is one of the key ideas in automata

theory, is a general coalgebraic construction.

Many important results in automata theory have turned out to be instances of

more abstract coalgebraic theorems. In particular, the results in Chapter 2 con-

cerning bisimulation should be familiar to those well versed in automata theory or

machine learning. Moreover, the existence of a final coalgebra in a coalgebraic cat-

egory of automata will immediately imply fundamental results about minimization.

In [6], the authors give a construction of a final Mealy machine using a very

simple modal logic, and identify that machine as a canonical model for the logic.

This identification gives rise to a simple completeness proof. We will do the same

here, but for Moore machines, and in the special case of Kripke machines we will

show that the logic can in fact be made significantly simpler.

In Chapter 5, we use this construction of the final Moore machine as the basis of

an algorithm for Moore machine reconstruction. Suppose one is given some informa-

tion about the behaviour of a Moore machine whose internal structure is unknown,

in the form of a set of formulae in the aforementioned logic. The algorithm then uses

1

this information to reconstruct a machine whose behaviour is consistent with this

known information, which can be used as an approximation to the original machine.

2

Chapter 1

Categories and Coalgebras

Definition 1.1 Given a functor F : C → C, a coalgebra for F is a pair (A,α)

where A is an object of C and α : A → FA is a morphism, sometimes called a

structure map.

A homomorphism of coalgebras f : (A,α) → (B, β) is a map f : A→ B in C such

that Ff ◦ α = β ◦ f .

A

f

��

α // FA

Ff

��
B

β // FB

The F -coalgebras and coalgebra homomorphisms form a category denoted by CoAlg(F).

If we regard a category as a generalized poset, and a functor F as a generalized

monotone function, an F -coalgebra corresponds to a postfixed point of F . Further-

more, a final object (Z, ζ) of CoAlg(F) corresponds to the greatest fixed point of

F , but in order for this generalization to make sense, the object Z must in some

sense be fixed by F , which is the content of the following lemma.

Lemma 1.1 (Co-Lambek Lemma) Let F : C → C be a functor. If (Z, ζ) is final in

the category CoAlg(F), then ζ is an isomorphism.

3

Proof. Certainly (FZ, Fζ) is an object of CoAlg(F). Note that by finality, there

is a unique coalgebra homomorphism f : (FZ, Fζ) → (Z, ζ), and hence the bottom

square in the diagram below commutes, while the top square trivially does.

Z

ζ

��

ζ // FZ

Fζ
��

FZ

f

��

Fζ // F 2Z

Ff

��
Z

ζ // FZ

Hence both squares in the diagram commute, so the whole rectangle does, and

therefore f ◦ζ : (Z, ζ) → (Z, ζ) is a coalgebra homomorphism. However, since (Z, ζ)

is final, the only such coalgebra homomorphism is the identity, so f ◦ ζ = idZ . As

well, the commutativity of the bottom square gives

ζ ◦ f = Ff ◦ Fζ = F (f ◦ ζ) = F (idZ) = idFZ

which implies that f = ζ−1 and hence ζ is an isomorphism.

Finality plays a central role in coalgebraic automata theory. In the following

sections we will see that if we can describe a particular category of automata as

a category of coalgebras for a functor, then a final coalgebra is in fact a sort of

universal machine of that type.

Lemma 1.2 Let F : Set → Set be a functor. Given F -coalgebras (S, α) and (T, β),

the coproduct (S + T, ξ) exists in CoAlg(F).

Proof. Let iS : S → S + T and iT : T → S + T be the injections of S and T into

their disjoint union. It is easy to see how ξ : S + T → F (S + T) should be defined

by examining the diagram below.

4

S
iS //

α

��

S + T

ξ
��

T
iToo

β

��
FS

F (iS)
// F (S + T) FT

F (iT)
oo

For s ∈ S, define ξ(s) = F (iS) ◦ α(s), and for t ∈ T , define ξ(t) = F (iT) ◦ β. Given

any (U, γ) and coalgebra homomorphisms f : (S, α) → (U, γ), g : (T, β) → (U, γ),

there is a unique f + g : (S + T, ξ) → (U, γ) such that

(S, α)
iS //

f %%LLLLLLLLLL
(S + T, ξ)

f+g

���
�
�

(T, β)
iToo

g
yyrrrrrrrrrr

(U, γ)

where (f + g)(s) = f(s) for s ∈ S and (f + g)(t) = g(t) for t ∈ T , exactly as in Set.

It is a coalgebra homomorphism since, given s ∈ S,

F (f + g) ◦ ξ(s) = F (f + g) ◦ F (iS) ◦ α(s)

= F ((f + g) ◦ iS) ◦ α(s)

= F (f) ◦ α(s)

= γ ◦ f(s)

= γ ◦ f + g(s)

and similarly for t ∈ T . Uniqueness is immediate since S + T is the coproduct in

Set, so f + g is the only function with (f + g) ◦ iS = f and (f + g) ◦ iT = g.

Note that the same construction works for general (possibly infinite) coprod-

ucts. In the contexts we will examine, F -coalgebras will be sets with transition

5

structure, and the coproduct of two such transition systems will turn out to be the

new transition system obtained by viewing the two systems as one system with two

independent components.

Lemma 1.3 Let F : Set → Set be a functor. Given two F -coalgebra homomor-

phisms f, g : (S, α) → (T, β), the coequalizer h : (T, β) → (U, γ) exists in CoAlg(F).

Proof. Since f and g are functions in Set satisfying a particular commutativity

condition, we can form their coequalizer h : T → U in Set. Consider the map

F (h) ◦ β : T → F (U).

F (h) ◦ β ◦ f = F (h) ◦ F (f) ◦ α

= F (h ◦ f) ◦ α

= F (h ◦ g) ◦ α

= F (h) ◦ F (g) ◦ α

= F (h) ◦ β ◦ g

Thus, by the universal property of h, there exists a unique γ : U → F (U) making

the right square of the diagram below commute.

S
f //
g
//

α

��

T
h //

β
��

U

γ

��
FS

Ff //

Fg
// FT

Fh // FU

Clearly, given any other coalgebra (V, ξ), and a homomorphism h′ : (T, β) → (V, ξ)

with h′ ◦ f = h′ ◦ g, there is a unique k : U → V in Set with h′ = k ◦ h by

the universal property of h. To verify that k (which was constructed in Set) is a

coalgebra homomorphism, note that by the assumption that h′ is a homomorphism,

6

Fh′ ◦ β = ξ ◦ h′

F (k ◦ h) ◦ β = ξ ◦ k ◦ h

F (k) ◦ F (h) ◦ β = ξ ◦ k ◦ h

F (k) ◦ γ ◦ h = ξ ◦ k ◦ h

F (k) ◦ γ = ξ ◦ k

where the last line uses the fact that coequalizers in any category are epi. Therefore,

the coequalizer of f and g in CoAlg(F) is h : (T, β) → (U, γ).

Although the two lemmas above are restricted to the case where F is an end-

ofunctor on the category of sets, there are no other assumptions made on F (in

particular F need not preserve any limits or colimits). This result is summarized in

the theorem below.

Theorem 1.1 For any functor F : Set → Set, all coproducts and coequalizers exist

in CoAlg(F) and are constructed in Set.

We now define a slight generalization of a pullback, which will become quite

prominent in the following chapter. Fix a category C and consider the diagram

below.

S

f ��?
??

??
??

T

g
��~~

~~
~~

~

U

Definition 1.2 An object V with maps p1 : V → S and p2 : V → T is said to be a

weak pullback of f and g, if for any object X with maps q1 : X → S and q2 : X → T

7

such that f ◦ q1 = g ◦ q2, there exists a map u : X → V such that p1 ◦ u = q1 and

p2 ◦ u = q2.

X

q1

��

q2

��

u

��
V

p1��~~
~~

~~
~

p2 @
@@

@@
@@

S

f ��@
@@

@@
@@

T

g
~~~~

~~
~~

~

U

Note that a weak pullback is simply a pullback without the uniqueness require-

ment on the map u : X → V . As one would expect, a functor F : C → D is said

to preserve weak pullbacks when it sends a weak pullback diagram in C to a weak

pullback diagram in D.

Definition 1.3 A functor F : C → D preserves weak pullbacks if, given a weak

pullback (V, p1, p2) of f and g in C, for any object Y ∈ D with maps r1 : Y → FS

and r2 : Y → FT such that Ff ◦ r1 = Fg ◦ r2, there exists a map w : Y → FV such

that Fp1 ◦ w = r1 and Fp2 ◦ w = r2.

Y

r1

		

r2

��

w

��
FV

Fp1||yy
yy

yy
yy

Fp2 ""F
FFFFFFF

FS

Ff ""F
FF

FF
FF

F FT

Fg||xxxxxxxx

FU

8



Chapter 2

Bisimulation

Bisimulation is the coalgebraic analogue of a congruence relation in universal alge-

bra. It is already widely studied and well understood in theoretical computer science.

Historically, bisimulation was invented by Park [13] as a formalization of ideas

of Milner [12] in his studies of concurrent systems. Bisimulation has turned out to

be a key notion in concurrency theory and process algebra. The same concept also

arose in modal logic in the work of van Benthem [3] [4]. A fundamental result is that

there is a simple modal logic characterization of bisimulation. Later it was realized

that bisimulation is naturally a coalgebraic concept [1].

Throughout this section, we will assume that the functor F : Set → Set pre-

serves weak pullbacks. However, the assumption is not used everywhere, so we will

distinguish those results that require it by marking them with an asterisk. This

section is a quick review of some of the most important results on bisimulation for

coalgebras of endofunctors on Set, all of which are present in [15].

Definition 2.1 A bisimulation between coalgebras (S, α) and (T, β) is a subset

R ⊆ S × T with a coalgebra structure γ : R → FR, such that both of the pro-

jections p1 : R→ S and p2 : R→ T are coalgebra homomorphisms.

9



R
p1

||yy
yy

yy
yy

y
p2

""F
FF

FF
FF

FF

γ

���
�
�

S

α

��

FR

Fp1||yy
yy

yy
yy

Fp2 ""F
FF

FF
FF

F T

β

��
FS FT

If (S, α) = (T, β), then (R, γ) is called a bisimulation on (S, α), and if a bisimulation

relation is also an equivalence relation, it is called a bisimulation equivalence. We

will often refer to a bisimulation (R, γ) simply as R.

Theorem 2.1 Let (S, α) and (T, β) be F -coalgebras. A function f : S → T is a coal-

gebra homomorphism iff its graph relation Grph(f) = {〈s, f(s)〉} is a bisimulation

between (S, α) and (T, β).

Proof. Let γ : Grph(f) → F (Grph(f)) be such that (Grph(f), γ) is a bisimulation

between (S, α) and (T, β). Note that p1 : Grph(f) → S is bijective, and p1
−1 : S →

Grph(f) is a coalgebra homomorphism since

α ◦ p1
−1 = F (p1

−1) ◦ Fp1 ◦ α ◦ p1
−1

= F (p1
−1) ◦ β ◦ p1 ◦ p1

−1

= F (p1
−1) ◦ β

Thus, f must be a homomorphism because we can write f = p2 ◦ p1
−1,

Conversely, suppose that f : S → T is a coalgebra homomorphism, and consider the

coalgebra (Grph(f), γ), where γ = Fp1
−1 ◦ α ◦ p1.

10



Fp1 ◦ γ = Fp1 ◦ (Fp1
−1 ◦ α ◦ p1)

= (Fp1 ◦ Fp1
−1) ◦ α ◦ p1

= F (p1 ◦ p−1
1 ) ◦ α ◦ p1

= F (idS) ◦ α ◦ p1

= α ◦ p1

Fp2 ◦ γ = Fp2 ◦ (Fp1
−1 ◦ α ◦ p1)

= F (p2 ◦ p−1
1 ) ◦ α ◦ p1

= Ff ◦ α ◦ p1

= β ◦ f ◦ p1

= β ◦ (p2 ◦ p−1
1 ) ◦ p1

= β ◦ p2

Therefore, the projections p1 : Grph(f) → S and p2 : Grph(f) → T are both

coalgebra homomorphisms, and hence (Grph(f), γ) is a bisimulation between (S, α)

and (T, β).

Lemma 2.1∗ Let f : (S, α) → (U, γ) and g : (T, β) → (U, γ) be coalgebra homomor-

phisms. Then the pullback (P, p1, p2) of f and g in Set gives a bisimulation between

(S, α) and (T, β).

Proof. First note the pullback in set is P = {〈s, t〉 ∈ S × T | f(s) = g(t)}, which

is clearly a subset of S × T . We can use the assumption that F preserves weak

pullbacks to construct a coalgebra structure on P .

11



P
p1

||yy
yy

yy
yy

y
p2

""F
FF

FF
FF

FF

ξ
���
�
�

S

α

�� f ""E
EE

EE
EE

EE FPFp1

||yy
yy

yy
yy Fp2

""F
FFFFFFF T

β
��g||xx

xx
xx

xx
x

FS

Ff ""E
EE

EE
EE

E U

γ

��

FT

Fg||xxxxxxxx

FU

The top face in the cubic diagram above is the pullback of f and g, while the bottom

face is a weak pullback by our assumption on F , and the two side faces determined

by f and g commute by definition. Thus, we have maps α ◦ p1 : P → FS and

β ◦p2 : P → FT such that Ff ◦α◦p1 = Fg ◦β ◦p2, so there exists a (not necessarily

unique) ξ : P → FP making the whole diagram commute, and hence (P, ξ) is a

bisimulation.

Lemma 2.2 Given two homomorphisms f : (U, γ) → (S, α) and g : (U, γ) → (T, β),

the image Im(f, g) = {〈f(u), g(u)〉 | u ∈ U} is a bisimulation between (S, α) and

(T, β).

Proof. Define j : U → Im(f, g) by j(t) = 〈f(t), g(t)〉, let i : Im(f, g) → U be any

right inverse to j, and consider the diagram below.

Im(f, g)

i

��

p1

{{vvvvvvvvv p2

$$H
HHHHHHHH

S U

j

OO

f
oo

g
// T

Note that each of the right angle triangles in the diagram above commutes. Now

define a map ξ : Im(f, g) → F (Im(f, g)) by ξ = F (j) ◦ γ ◦ i. It is easy to verify

that p1 : Im(f, g) → S and p2 : Im(f, g) → T are both homomorphisms.

12



Fp1 ◦ ξ = Fp1 ◦ (Fj ◦ γ ◦ i)

= F (p1 ◦ j) ◦ γ ◦ i

= Ff ◦ γ ◦ i

= α ◦ f ◦ i

= α ◦ p1

Fp2 ◦ ξ = Fp2 ◦ (Fj ◦ γ ◦ i)

= F (p2 ◦ j) ◦ γ ◦ i

= Fg ◦ γ ◦ i

= β ◦ g ◦ i

= β ◦ p2

Therefore, the coalgebra (Im(f, g), ξ) is a bisimulation between (S, α) and (T, β).

Lemma 2.3 ∗ The relational composition Q ◦ R = {〈r, u〉 | ∃s ∈ S with 〈r, s〉 ∈ R

and 〈s, u〉 ∈ Q} of two bisimulations R ⊆ S × T and Q ⊆ T × U is a bisimulation

between (S, α) and (U, γ).

Proof. We can define Q ◦R = Im(r1 ◦ p1, q2 ◦ p2) = {〈r1 ◦ p1(x), q2 ◦ p2(x)〉 | x ∈ X},

where X is the pullback of r2 and q1 in Set.

X
p1

����
��

��
�� p2

��@
@@

@@
@@

@

R
r1

����
��

��
�� r2

��?
??

??
??

? Q
q1

����
��

��
�� q2

��?
??

??
??

S T U

13



By Lemma 2.1, the set X can be given a coalgebra structure, and by Lemma 2.2,

Q ◦R is then a bisimulation between (S, α) and (U, γ).

Theorem 2.2 Given a family of bisimulations (Ri, γi) between two colagebras (S, α)

and (T, β), the union
⋃

iRi is a bisimulation between (S, α) and (T, β).

Proof. Let p1 : ΣiRi → S and p2 : ΣiRi → T be the projections from the disjoint

union of the Ri’s in Set. We know that ΣiRi can be given a coalgebra structure by

Lemma 1.2, and since
⋃

iRi = Im(p1, p2),
⋃

iRi is a bisimulation by Lemma 2.2.

Corollary 2.1 The set of all bisimulations between two coalgebras (S, α) and (T, β)

is a complete lattice with suprema and infima given by

∨
i

Ri =
⋃
i

Ri

∧
i

Ri =
⋃
{R ⊆ S × T | R is a bisimulation with R ⊆ Ri,∀i}

This means that there is a greatest bisimulation between (S, α) and (T, β), which we

will denote by ∼〈S,T 〉, or simply ∼S when (S, α) = (T, β).

∼〈S,T 〉 =
⋃
{R ⊆ S × T | R is a bisimulation}

Proposition 2.1 The greatest bisimulation, ∼S, on a single coalgebra (S, α) is al-

ways a bisimulation equivalence.

Proof. Clearly the diagonal relation ∆S is a bisimulation on (S, α), and hence ∼S is

reflexive. Given a bisimulation (R, γ) on (S, α), the relational inverse Rop is again a

14



bisimulation. Let i : R→ Rop be the isomorphism sending 〈s, t〉 ∈ R to 〈t, s〉 ∈ Rop.

We claim that (Rop, F (i) ◦ γ ◦ i−1) is a bisimulation on (S, α).

Fp1 ◦ (Fi ◦ γ ◦ i−1) = F (p1 ◦ i) ◦ γ ◦ i−1

= F (p2) ◦ γ ◦ i−1

= α ◦ p2 ◦ i−1

= α ◦ p1

The argument is similar for p2. Thus, both projections p1 and p2 are homomor-

phisms, so Rop is a bisimulation, and hence ∼S is symmetric. The transitivity of ∼S

is immediate from Lemma 2.3. Therefore, ∼S is an equivalence relation.

Bisimulation equivalences on a coalgebra (S, α) and coalgebra homomorphisms

with domain (S, α) are related by the following two propositions.

Proposition 2.2 ∗ A homomorphism f : (S, α) → (T, β) defines a bisimulation

equivalence on (S, α) given by K(f) = {〈s, s′〉 | f(s) = f(s′)}.

Proof. Clearly, K(f) is an equivalence relation. Note that by definition, K(f) is the

pullback in Set of f along itself, and therefore by Lemma 2.1 it can be given the

structure of a bisimulation.

Proposition 2.3 Let R be a bisimulation equivalence on a coalgebra (S, α), and let

εR : S → S/R be the quotient map induced by R. Then there is a unique coalgebra

structure αR : S/R→ F (S/R) on S/R such that εR is a homomorphism.

S

εR

��

α // FS

F (εR)
��

S/R
αR // F (S/R)

15



Proof. By definition, εR is the coequalizer in Set of the two projections from R ⊆

S × S to S, so the result is immediate by Lemma 1.3. If we denote an element of

the R-equivalence class of s by [s], we can concretely define αR([s]) = F (εR) ◦ α(s),

where s ∈ [s].

If we are a given a coalgebra (S, α), we say that s, s′ ∈ S are bisimilar if there

exists a bisimulation R ⊆ S × S with 〈s, s′〉 ∈ R. Together, the two propositions

above imply that s, s′ ∈ S are bisimilar if and only if there exists a homomorphism

f : (S, α) → (T, β) with f(s) = f(s′).

Recall that we can apply a function f : S → T to a relation R ⊆ S × S com-

ponentwise, to obtain f(R) = {〈f(s), f(s′)〉 | 〈s, s′〉 ∈ R}. Similarly, for a relation

R ⊆ T × T , f−1(R) = {〈s, s′〉 | 〈f(s), f(s′)〉 ∈ R}.

Proposition 2.4 ∗ Let f : (S, α) → (T, β) be a homomorphism, then

1. If R ⊆ S × S is a bisimulation on (S, α), f(R) is a bisimulation on (T, β).

2. If Q ⊆ T × T is a bisimulation on (T, β), f−1(Q) is a bisimulation on (S, α).

Proof. Immediate from Lemma 2.3 and the observation that f(R) = Grph(f)op ◦

R ◦Grph(f), and f−1(Q) = Grph(f) ◦Q ◦Grph(f)op.

16



Chapter 3

Machines as Coalgebras

In order for the general results on coalgebras and bisimulation developed in the two

previous chapters to be applicable in the context of automata theory, we have to

explain how we can describe automata as coalgebras for some functor.

We will begin by defining a few very simple classes of machines. Their coalgebraic

descriptions will be used to construct definitions of more complex types of automata.

Example 3.1 Output: Consider a structure which consists of a set of states, each

of which has a successor state and an associated output in some output set O. We

call such a structure an output machine.

We can model this structure as a coalgebra for the functor F : Set → Set defined

by FS = S ×O, and Ff = f × idO. Such a coalgebra has the form

S
α // S ×O

We will denote the product projections on S×O by π1 and π2. Given a state s ∈ S,

consider α(s). The first component, π1 ◦ α(s), represents the successor state of s,

so we define nextS = π1 ◦ α. Similarly, the second component, π2 ◦ α(s), represents

17



the output in state s, so let outS = π2 ◦ α. Hence a coalgebra for this functor is a

set with a simple transition and output structure.

A homomorphism f : (S, α) → (T, β) is a function f : S → T such that the diagram

S

f

��

α // S ×O
f×idO
��

T
β // T ×O

commutes, which means that for each s ∈ S, f(π1(α(s)) = π1(β(f(s))), and π2(α(s)) =

π2(β(f(s))), or using our interpretation of these coalgebras as state transition ma-

chines above, f(nextS(s)) = nextT (f(s)), and outS(s) = outT (f(s)).

A bisimulation between output machines (S, α) and (T, β) is a relation R ⊆ S × T

with a coalgebra structure γ : R→ R×O such that

R
p1

yyssssssssssss
p2

%%KKKKKKKKKKKK

γ

���
�
�

S

α

��

R×O

p1×idOyyssssssssss

p2×idO %%KKKKKKKKKK T

β

��
S ×O T ×O

commutes. It is easy to see that the commutativity of the diagram means exactly that

if 〈s, t〉 ∈ R, then nextR(〈s, t〉) = 〈nextS(s), nextT (t)〉, and outR(〈s, t〉) = outS(s) =

outT (t).

Example 3.2 Observation: If we let O be the powerset of some set of observables

{p1, ...pn}, then a coalgebra for the functor described above associates a set of ob-

servations with each state in S, and we can interpret outS(s) as the subset of ob-

servables seen in the state s. We can model stochastic observations similarly, with

O = D({p1, ..., pn}), the set of sub-probability distributions on {p1, ..., pn}.

18



Example 3.3 Input: Fix a set of inputs Σ, and consider a structure we will call

an input machine, which consists of a set of states with a transition function δ :

S × Σ → S that produces a successor state for each state and input pair.

We can model such a structure as a coalgebra for the functor F : Set → Set defined

by FS = SΣ, the set of functions from Σ to S, and Ff = fΣ, where for d : Σ → S,

fΣ(d) = f ◦ d. In this case, a coalgebra has the form

S
α // SΣ

We can define a function δS : S × Σ → S by uncurrying α, i.e. δS(s, a) = α(s)(a).

In the following, we will often write a · s for δS(s, a). As usual we will extend

δS : Σ× S → S to δS
∗ : Σ∗ × S → S by induction. For each a ∈ Σ and any w ∈ Σ∗,

let δS
∗(s, aw) = δS

∗(a · s, w), or in the notation defined above, aw · s = w · (a · s).

A homomorphism f : (S, α) → (T, β) is a function f : S → T such that the diagram

S

f

��

α // SΣ

fΣ

��
T

β // TΣ

commutes, which means that for each s ∈ S, fΣ(α(s)) = β(f(s)). Using our

definition of δS above, f(δS(s, a)) = δT (f(s), a) for all a ∈ Σ, or equivalently,

f(a · s) = a · f(s).

A bisimulation between input machines (S, α) and (T, β) is a relation R ⊆ S × T

with a coalgebra structure γ : R→ RΣ such that

19



R
p1

}}{{
{{

{{
{{

{
p2

!!D
DD

DD
DD

DD

γ

���
�
�

S

α

��

RΣ

pΣ
1}}{{

{{
{{

{{

pΣ
2 !!C

CC
CC

CC
C T

β

��
SΣ TΣ

commutes. Chasing an element 〈s, t〉 ∈ R through the diagram, we obtain pΣ
1 ◦

γ(〈s, t〉) = α ◦ p1(〈s, t〉), i.e. p1 ◦ γ(〈s, t〉) = α(s). We can write this equation as

p1(a · 〈s, t〉) = a · s for all a ∈ Σ. Similarly, we can show p2(a · 〈s, t〉) = a · t for all

a ∈ Σ, and the two together imply a · 〈s, t〉 = 〈a · s, a · t〉 for all a ∈ Σ.

We can use the functors defined above to give coalgebraic descriptions of various

types of automata. The class of automata we are most concerned with is described

below, and we will later identify two additional types of abstract machines which

are special cases of this definition.

Definition 3.1 A Moore machine with input alphabet Σ and output lattice O is a

coalgebra for the functor F : Set → Set defined by FS = SΣ×O, and Ff = fΣ×id,

where O is a complete lattice.

S
α // SΣ ×O

Such a coalgebra consists of two maps, a transition function π1 ◦α : S → SΣ, which

we will uncurry as δS : S×Σ → S defined by δS(s, a) = (π1◦α(s))(a), and an output

map oS = π2 ◦α : S → O. Again we can extend δS : S×Σ → S to δS
∗ : S×Σ∗ → S,

and we will write a · s for δS(s, a).

A homomorphism of Moore machines f : (S, α) → (T, β) is a function f : S → T

such that the diagram below commutes.

20



S

f

��

α // SΣ ×O
fΣ×id
��

T
β // TΣ ×O

(fΣ × id) ◦ α(s) = β ◦ f(s)

(fΣ × id)〈δS(s,−), o(s)〉 = 〈δT (f(s),−), o(f(s))〉

〈f ◦ δS(s,−), o(s)〉 = 〈δT (f(s),−), o(f(s))〉

Observe that f ◦ δS(s,−) = δT (f(s),−) if and only if f(a · s) = a · f(s) for all

a ∈ Σ, and hence a homomorphism of coalgebras for this functor can be described as

a function f : S → T such that a ·f(s) = f(a · s) for all a ∈ Σ and oT (f(s)) = oS(s),

which is the standard automata theoretic notion of a homomorphism of Moore

machines.

Definition 3.2 A bisimulation between Moore machines (S, α) and (T, β) is a rela-

tion R ⊆ S × T , with a coalgebra structure γ : R → RΣ ×O such that the diagram

below commutes.

R
p1

xxqqqqqqqqqqqqq
p2

&&MMMMMMMMMMMMM

γ

���
�
�

S

α

��

RΣ ×O

pΣ
1 ×idxxrrrrrrrrrr

pΣ
2 ×id &&LLLLLLLLLL T

β

��
SΣ ×O TΣ ×O

α ◦ p1(〈s, t〉) = (pΣ
1 × id) ◦ γ(〈s, t〉)

α(s) = (pΣ
1 × id) ◦ 〈δR(〈s, t〉), oR(〈s, t〉)〉

〈δS(s,−), oS(s)〉 = 〈p1 ◦ δR(〈s, t〉,−), oR(〈s, t〉)〉

21



β ◦ p2(〈s, t〉) = (pΣ
2 × id) ◦ γ(〈s, t〉)

β(t) = (pΣ
2 × id) ◦ 〈δR(〈s, t〉), oR(〈s, t〉)〉

〈δT (t,−), oT (t)〉 = 〈p2 ◦ δR(〈s, t〉,−), oR(〈s, t〉)〉

In the first component of each the two commutativity conditions, p1◦δR(〈s, t〉,−) =

δS(s,−) and p2 ◦ δR(〈s, t〉,−) = δT (t,−), or equivalently, p1(a · 〈s, t〉) = a · s, and

p2(a · 〈s, t〉) = a · t, for all a ∈ Σ. These two conditions can be written together in a

more compact form, a · 〈s, t〉 = 〈a · s, a · t〉 for all a ∈ Σ.

The second components simply state that oR(〈s, t〉) = oS(s) = oT (t). Therefore,

we recover the usual definition of a bisimulation for Moore machines, that is, a re-

lation R ⊆ S × T such that if 〈s, t〉 ∈ R, then 〈a · s, a · t〉 ∈ R, and oS(s) = oT (t).

Now that we have verified that the coalgebraic description of a Moore machine

is equivalent to specifying a set of states S, transition function δS : S×Σ → S, and

output function oS : S → O, we will frequently refer to Moore machine as triples

(S, δS, oS) as well as coalgebras (S, α) for F .

Classically, a Moore machine has a finite set of outputs O with no additional

structure. To describe such a machine, we can give O a trivial complete lattice

structure by adding two outputs, > and ⊥, which are never produced.

Now we need to establish that the Moore machine functor F preserves weak

pullbacks. Once this is done, we know the functor F satisfies the assumptions at

the beginning of Chapter 2, and thus all of the results on bisimulation developed

there apply to Moore machines.

Theorem 3.1 The Moore machine functor F : Set → Set defined by FS = SΣ×O,

and Ff = fΣ × id preserves weak pullbacks.

22



Proof. Suppose that the diagram below is a weak pullback in Set, that is, given any

set X with functions h : X → S and k : X → T such that f ◦ h = g ◦ k, there exists

a function u : X → P with p1 ◦ u = h and p2 ◦ u = k.

P
p1

����
��

��
� p2

��@
@@

@@
@@

S

f ��?
??

??
??

T

g
��~~

~~
~~

~

U

If we apply F to the diagram above, and suppose that there is a set X with maps

h : X → SΣ×O and k : X → TΣ×O such that (f × id) ◦h = (g× id) ◦k we obtain

X

h

��

k

��

PΣ ×O

p1×idxxrrrrrrrrrr

p2×id &&LLLLLLLLLL

SΣ ×O

f×id &&LLLLLLLLLL TΣ ×O

g×idxxrrrrrrrrrr

UΣ ×O

Let h1 = π1 ◦ h, h2 = π2 ◦ h and similarly for k1, k2, so h = h1× h2 and k = k1× k2.

Given h1 : X → SΣ, any a ∈ Σ determines a function ha = (h1(−))(a) : X → S, and

similarly ka = (k1(−))(a) : X → T . Moreover, since f ◦ h1 = g ◦ k1, it is immediate

that f ◦ ha = g ◦ ka, and therefore there is a ua : X → P such that p1 ◦ ua = ha and

p2 ◦ ua = ka because P is a weak pullback of f along g.

Let v1 : X → PΣ be defined by (v1(x))(a) = ua(x). Then for all a ∈ Σ and x ∈ X,

p1 ◦ (v1(x))(a) = p1 ◦ ua(x) = ha(x) = h1(x)(a), and hence p1 ◦ v1 = h1. Similarly

23



p2 ◦ v1 = k1. Let v2 = h2 = k2 : X → O, and define v : X → PΣ×O by v = v1× v2.

(p1 ◦ v1)× v2 = h1 × h2

(p1 × id) ◦ (v1 × v2) = h

(p1 × id) ◦ v = h

(p2 ◦ v1)× v2 = k1 × k2

(p2 × id) ◦ (v1 × v2) = k

(p2 × id) ◦ v = k

Therefore, PΣ×O with p1× id and p2× id is a weak pullback of f × id along g× id,

and therefore the Moore machine functor F preserves weak pullbacks.

Definition 3.3 A subautomaton (S ′, δS′ , oS′) of a Moore machine (S, δS, oS) is a

Moore machine with S ′ ⊆ S, and for which the inclusion function i : S ′ → S is a

homomorphism.

Given any Moore machine (S, δS, oS) and any state s ∈ S, let Rch(s) be the set

of states reachable from s in a finite number of transitions. Formally, Rch(s) =

{w · s | w ∈ Σ∗}.

Definition 3.4 The subautomaton of a Moore machine (S, δS, oS) generated by a

state s ∈ S, which will be denoted 〈s〉(S,δS ,oS) is given by (Rch(s), δS, oS).

Observe that 〈s〉(S,δS ,oS) is a well defined Moore machine with a nontrivial set

of states. In particular, s ∈ Rch(s) and certainly the restriction of δS and oS to

Rch(S) makes (Rch(s), δS, oS) a Moore machine.

Also, note that 〈s〉(S,δS ,oS) is in fact a subautomaton of (S, δS, oS), because i(a ·

s) = a · s = a · i(s) for all s ∈ Rch(s), and clearly o(s) = o(i(s)) as well.

24



Lemma 3.1 Any homomorphism of Moore machines f : (S, δS, oS) → (T, δT , oT )

has the property that f(w · s) = w · f(s) for all w ∈ Σ∗.

Proof. If w ∈ Σ, then f(a · s) = a · f(s) by definition. Assume f(w′ · s) = w′ · f(s)

for all w′ of length n, then if w is of length n+ 1, we can write w = w′a with a ∈ Σ

and w′ of length n, and hence

f(w · s) = f(w′a · s)

= f(a · (w′ · s))

= a · f(w′ · s)

= a · (w′ · f(s))

= w′a · f(s)

= w · f(s)

Therefore, by induction on the length of w, f(w · s) = w · f(s) for all w ∈ Σ∗.

Theorem 3.2 Any homomorphism of Moore machines f : (S, δS, oS) → (T, δT , oT )

has the property that f(〈s〉(S,δS ,oS)) = 〈f(s)〉(T,δT ,oT ), i.e. the image of the subau-

tomaton generated by s is the subautomaton generated by the image of s.

Proof. Note that the transition and output functions of f(〈s〉(S,δS ,oS)) are the re-

strictions of δT and oT to f(Rch(s)), while the transition and output functions of

〈f(s)〉(T,δT ,oT ) are the restrictions of δT and oT to Rch(f(s)). So all we need to show

is that Rch(f(s)) = f(Rch(s)). But this is clear since by the previous lemma,

25



Rch(f(s)) = {w · f(s) | w ∈ Σ∗}

= {f(w · s) | w ∈ Σ∗}

= f({w · s | w ∈ Σ∗})

= f(Rch(s))

An important special case of a Moore machine is a Kripke machine. In this

case, each state is associated with one or more observations that may be witnessed

when the machine is in that particular state, so an output is a set of observations.

Alternatively, a Kripke machine is just a Moore machine where the output lattice

carries a complete atomic boolean algebra structure.

Definition 3.5 A Kripke machine with input alphabet Σ and observation set O

is a coalgebra for the functor F : Set → Set defined by FS = SΣ × PO, and

Ff = fΣ × id.

S
α // SΣ × PO

Such a coalgebra also consists of two maps, a transition function π1 ◦ α : S → SΣ,

which we will uncurry as δS : S × Σ → S defined by δS(s, a) = (π1 ◦ α(s))(a), and

an observation map oS = π2 ◦ α : S → PO.

In the context of Kripke machines, a coalgebra homomorphism f : (S, α) → (T, β)

is again a function f : S → T such that a · f(s) = f(a · s) for all a ∈ Σ and

oT (f(s)) = oS(s). The definition of bisimulation remains unchanged as well.

26



Definition 3.6 Let D(X) denote the set of sub-probability distributions on the set

X, with an added constant ⊥. A DASO (short for Deterministic Actions, Stochastic

Observations) with input alphabet Σ and observation set O is a coalgebra for the

functor F : Set → Set defined by FS = SΣ ×DO, and Ff = fΣ × id.

We can obtain a transition function δS : S × Σ → S and an output function oS :

S → DO in the same manner as before. The definition of homomorphism and

bisimulation in terms of these functions remains unchanged.

Once again, a DASO is a special case of a Moore machine. We can define

a complete lattice structure on DO by letting P ≤D Q iff P dominates Q, i.e.

P (x) ≤ Q(x) for all x ∈ O. The meet of a set of distributions,
∧

i∈I Pi is given by

the pointwise maximum

∧
i∈I

Pi(x) = sup
i∈I

Pi(x)

If this fails to define a sub-probability distribution because
∑

x∈O
∧

i∈I Pi(x) > 1,

then the meet is defined as ⊥.

27



28



Chapter 4

Logic and Finality

Kripke Machines

Suppose we are given a Kripke machine with inputs in Σ and observations in O,

as in Definition 3.5, in the form of a black box which represents a certain function

f : Σ∗ → PO, and our goal is to learn the behaviour of the machine, i.e. the

function it represents. The only way to extract information about the behaviour of

the machine is to watch it working. One must wait for it to take an input from its

environment and observe which outputs, if any, the machine produces.

Note that in this situation, we are only given partial information about the be-

haviour of the machine. In particular, we cannot deny that the machine will ever

display a certain behaviour simply because we have not observed it. This leads us

to consider a positive logic where formulae represent observable behaviours.

With this motivation in mind, we define the simple modal logic below. Each

formula in the logic will represent a finite observation about the behaviour of a

Kripke machine.

Definition 4.1 The syntax of L is defined by induction as follows, where a ∈ Σ,

and p ∈ O.

29



L ::= true | p | a(φ) | φ ∧ ψ

We will refer to the elements of O as atomic formulae, and given a set Φ of

formulae in L, define At(Φ) as the set of all atomic formulae in Φ. Note that the

atomic formulae are also the atoms of the boolean algebra PO.

Definition 4.2 (Semantics) Given a Kripke machine (S, α), and a formula ϕ ∈ L,

the subset [[ϕ]] ⊆ S of states satisfying ϕ is defined by induction as

s ∈ [[true]] for all s ∈ S

s ∈ [[p]] if p ∈ o(s)

s ∈ [[a(φ)]] if a · s ∈ [[φ]]

s ∈ [[φ ∧ ψ]] if s ∈ [[φ]] and s ∈ [[ψ]]

This simple logic represents a modified fragment of the Mealy logic presented in

[6], which has been stripped down here and adapted to Kripke machines. Follow-

ing [6], we define a logical consequence relation ≤ between formulae by the set of

proof rules below. An inequality φ1 ≤ φ2 should be read as ”φ1 implies φ2”. If the

inequality φ1 ≤ φ2 can be derived from a finite number of applications of the rules

below, we write ` φ1 ≤ φ2.

(ref) φ ≤ φ (top) φ ≤ true

(∧1) φ1 ∧ φ2 ≤ φ1 (∧2) φ1 ∧ φ2 ≤ φ2

(trs)
φ1 ≤ φ2 φ2 ≤ φ3

φ1 ≤ φ3

(∧i)
φ ≤ φ1 φ ≤ φ2

φ ≤ φ1 ∧ φ2

30



(>) true ≤ > (topa) true ≤ a(true)

(∧a) a(φ1) ∧ a(φ2) ≤ a(φ1 ∧ φ2)

(≤a)
φ1 ≤ φ2

a(φ1) ≤ a(φ2)

Theorem 4.1 (Soundness) If ` φ1 ≤ φ2 then any state s of any Kripke machine

(S, α) satisfying φ1 also satisfies φ2.

Proof. By induction on the length of the proof of φ1 ≤ φ2. Let (S, α) and s ∈ S be

given. Suppose ` ψ1 ≤ ψ2 implies s ∈ [[ψ1]] ⇒ s ∈ [[ψ2]] so long as ψ1 ≤ ψ2 has a

proof of length less than n, and let φ1 ≤ φ2 have a proof of length n.

For the base case, we must confirm that for each inference rule without any hypothe-

ses, if s ∈ S satisfies the formula on the right hand side of the inequality, then it

satisfies the formula on the left. The verification is routine and we will simply omit

it here.

In the inductive step, we need to verify that any s ∈ S satisfying the hypothesis of

one of (trs), (∧i), or (≤a) satisfies its conclusion. For (trs), φ1 ≤ φ2 and φ2 ≤ φ3

have proofs of length n or less by assumption, hence s ∈ [[φ1]] ⇒ s ∈ [[φ2]] and

s ∈ [[φ2]] ⇒ s ∈ [[φ3]] by the induction hypothesis. Therefore s ∈ [[φ1]] ⇒ s ∈ [[φ3]].

Similarly, for (∧i), s ∈ [[φ]] ⇒ s ∈ [[φ1]] and s ∈ [[φ]] ⇒ s ∈ [[φ2]] by assumption,

and hence s ∈ [[φ]] ⇒ s ∈ [[φ1 ∧ φ2]] by definition of the semantics of L. Finally, for

(≤a), we know s ∈ [[φ1]] ⇒ s ∈ [[φ2]] by assumption. If s ∈ [[a(φ1)]], then a · s ∈ [[φ1]]

by definition of the semantics, hence a · s ∈ [[φ2]] as we just observed, and therefore

s ∈ [[a(φ2)]] again by our semantics for L.

31



Canonical Models

The following section gives a construction of the final Kripke machine with inputs

in Σ and observations in O, which is adapted from [6]. This construction uses the

system of inference defined above and makes no mention of the final sequence typi-

cally used to construct final coalgebras [14]. Moreover, we identify the final Kripke

machine as an analogue of the well known canonical model for a modal logic [5] in

this setting.

Two formulae φ1 and φ2 are logically equivalent (written φ1 ' φ2) if φ1 ≤ φ2

and φ2 ≤ φ1. Logical equivalence is clearly an equivalence relation (see (ref) and

(trs)), so we can construct the Lindenbaum algebra of L, call it L/'. Let Θ be the

set of filters of L/'.

We can now turn Θ into a Kripke machine, by defining ζ : Θ → ΘΣ × PO as

follows. For a filter F ∈ Θ, let a · F = {φ|a(φ) ∈ F}, and o(F ) = At(F ).

It is easy to see that a·F is again a filter since if φ1, φ2 ∈ a·F , then a(φ1), a(φ2) ∈

F , so a(φ1 ∧ φ2) ∈ F by (∧a), and hence φ1 ∧ φ2 ∈ a · F . Furthermore, if φ1 ∈ a · F

and φ1 ≤ φ2, then a(φ1) ≤ a(φ2) by (≤a), and hence a(φ2) ∈ F since F is up-closed,

so φ2 ∈ a · F .

Theorem 4.2 The Kripke machine (Θ, ζ) described above is final, i.e. for any

Kripke machine (S, α), there exists a unique homomorphism fsat : (S, α) → (Θ, ζ)

sending a state of (S, α) to the set of (equivalence classes of) formulae it satisfies.

Proof. Define fsat : S → Θ by fsat(s) = {φ|s ∈ [[φ]]}. The fact that fsat(s) is a filter

follows easily from soundness and the definition of the semantics of L. In particular,

soundness implies that fsat(s) is an up-closed set of formulae, while the semantics

ensure that φ1, φ2 ∈ fsat(s) implies φ1 ∧ φ2 ∈ fsat(s).

32



To verify fsat : (S, α) → (Θ, ζ) is a homomorphism, we must check that for each

a ∈ Σ, a · fsat(s) = fsat(a · s) and o(fsat(s)) = o(s). However, these conditions are

immediate from the definition of fsat and the semantics of L.

a · fsat(s) = {φ|a(φ) ∈ fsat(s)}

= {φ|s ∈ [[a(φ)]]}

= {φ|a · s ∈ [[φ]]}

= fsat(a · s)

o(fsat(s)) = At(fsat(s))

= {p ∈ O|p ∈ fsat(s)}

= {p ∈ O|s ∈ [[p]]}

= {p ∈ O|p ∈ o(s)}

= o(s)

To complete the proof, we also need to show uniqueness. Suppose g : (S, α) → (Θ, ζ)

is a homomorphism, and let s ∈ S. We prove φ ∈ fsat(s) iff φ ∈ g(s) by structural

induction on the formula φ.

p ∈ g(s) ⇐⇒ p ∈ o(g(s))

⇐⇒ p ∈ o(s)

⇐⇒ s ∈ [[p]]

⇐⇒ p ∈ fsat(s)

33



a(φ) ∈ g(s) ⇐⇒ φ ∈ a · g(s)

⇐⇒ φ ∈ g(a · s)

⇐⇒ φ ∈ fsat(a · s)

⇐⇒ φ ∈ a · fsat(s)

⇐⇒ a(φ) ∈ fsat(s)

φ1 ∧ φ2 ∈ g(s) ⇐⇒ φ1 ∈ g(s) and φ2 ∈ g(s)

⇐⇒ φ1 ∈ fsat(s) and φ2 ∈ fsat(s)

⇐⇒ φ1 ∧ φ2 ∈ fsat(s)

Thus, for any Kripke machine (S, α), fsat : (S, α) → (Θ, ζ) is a homomorphism,

and moreover, it is the unique homomorphism from (S, α) to (Θ, ζ). Therefore, the

machine (Θ, ζ) is a final object in the category of Kripke machines.

The following lemma is commonly known as the truth lemma in modal logic [5].

Its content is the observation that the formulae contained in a filter F ∈ Θ are

exactly the formulae which F satisfies as a state of (Θ, ζ). This lemma is key, as

it shows that (Θ, ζ) plays the role of a canonical model for the modal logic L, and

moreover, it will allow for an extremely simple proof of completeness.

Lemma 4.1 For all φ ∈ L and all F ∈ Θ, F ∈ [[φ]] ⇐⇒ φ ∈ F .

Proof. By structural induction on φ.

34



F ∈ [[p]] ⇐⇒ p ∈ o(F )

⇐⇒ p ∈ At(F )

⇐⇒ p ∈ F

F ∈ [[a(φ)]] ⇐⇒ a · F ∈ [[φ]]

⇐⇒ φ ∈ a · F

⇐⇒ φ ∈ {ψ|a(ψ) ∈ F}

⇐⇒ a(φ) ∈ F

F ∈ [[φ1 ∧ φ2]] ⇐⇒ F ∈ [[φ1]] and F ∈ [[φ2]]

⇐⇒ φ1 ∈ F and φ2 ∈ F

⇐⇒ φ1 ∧ φ2 ∈ F

Theorem 4.3 (Completeness) If s ∈ [[φ1]] ⇒ s ∈ [[φ2]] for all Kripke machines

(S, α), then ` φ1 ≤ φ2.

Proof. Assume 6` φ1 ≤ φ2. It suffices to find s ∈ (S, α) with s ∈ [[φ1]] but s 6∈ [[φ2]].

Let Fφ1 = {ψ|φ1 ≤ ψ}. This is clearly a filter, and hence also a state of (Θ, ζ). Note

that φ1 ∈ Fφ1 , but by assumption φ2 6∈ Fφ1 , and hence by Lemma 4.1, Fφ1 ∈ [[φ1]]

but Fφ1 6∈ [[φ2]].

35



Moore Machines

This construction of a final Kripke machine through a deductive system in fact

generalizes easily to a much larger class of machines. To deal with general Moore

machines, as described in Definition 3.1, we need to impose two new inference rules

in our logic, which were already present in [6], but were not necessary for Kripke

machines. These rules describe how the complete lattice structure of the outputs of

a Moore machine interacts with the logic L.

Note that a Kripke machine with observations in O is also a Moore machine,

where the output lattice is PO, ordered by reverse containment. The meet operation

corresponds to union in this context.

Definition 4.3 The syntax of L is once again defined by induction as follows, where

a ∈ Σ, and p ∈ O.

L ::= true | p | a(φ) | φ ∧ ψ

We will refer to the elements of O as atomic formulae, and given a set Φ of formulae

in L, define At(Φ) as the set of all atomic formulae in Φ. Note that the atomic

formulae are not atoms of O, but simply arbitrary elements.

Definition 4.4 (Semantics) Given a Moore machine (S, α), and a formula ϕ ∈ L,

the subset [[ϕ]] ⊆ S of states satisfying ϕ is defined by induction as

s ∈ [[true]] for all s ∈ S

s ∈ [[p]] if o(s) ≤O p

s ∈ [[a(φ)]] if a · s ∈ [[φ]]

s ∈ [[φ1 ∧ φ2]] if s ∈ [[φ1]] and s ∈ [[φ2]]

36



The system of inference for general Moore machines is similar to the Kripke

machine case, but the atomic structure of PO allows for two fewer inference rules

in the case of Kripke machines. In the general case, the rules (∧p), and (≤p) are

required to describe how the lattice structure on O interacts with the logic L

(ref) φ ≤ φ (top) φ ≤ true

(∧1) φ1 ∧ φ2 ≤ φ1 (∧2) φ1 ∧ φ2 ≤ φ2

(trs)
φ1 ≤ φ2 φ2 ≤ φ3

φ1 ≤ φ3

(∧i)
φ ≤ φ1 φ ≤ φ2

φ ≤ φ1 ∧ φ2

(>p) true ≤ > (topa) true ≤ a(true)

(∧p) p ∧ q ≤ p ∧O q (∧a) a(φ1) ∧ a(φ2) ≤ a(φ1 ∧ φ2)

(≤p)
p ≤O q

p ≤ q
(≤a)

φ1 ≤ φ2

a(φ1) ≤ a(φ2)

Theorem 4.4 (Soundness) If ` φ1 ≤ φ2 then any state s of any Moore machine

(S, α) satisfying φ1 also satisfies φ2.

Proof. The same as the Kripke machine case, but with the two additional rules

(∧p) and (≤p). Again we proceed by induction on the length of the proof. Let

(S, α) and s ∈ S be given. Suppose ` φ1 ≤ φ2 implies s ∈ [[φ1]] ⇒ s ∈ [[φ2]] so long

as φ1 ≤ φ2 has a proof of length less than n, and let ψ1 ≤ ψ2 have a proof of length n.

For (∧p), suppose that s ∈ [[p ∧ q]]. Then s ∈ [[p]] and s ∈ [[q]], so o(s) ≤O p and

o(s) ≤O q, and hence o(s) ≤O p ∧O q. Therefore, s ∈ [[p ∧O q]]. Note that the

37



induction hypothesis is not used here since (∧p) has no hypotheses. In the case of

(≤p), if p ≤O q and s ∈ [[p]], then o(s) ≤O p, and therefore o(s) ≤O q, so s ∈ [[q]].

Canonical Models

Once again, let Θ be the set of all filters of L/', and turn it into a Moore machine

by defining ζ : Θ → ΘΣ×O as follows. For a filter F ∈ Θ, let a ·F = {φ|a(φ) ∈ F},

and o(F ) =
∧
O At(F ).

Theorem 4.5 The Moore machine (Θ, ζ) described above is final, i.e. for any Moore

machine (S, α), there exists a unique homomorphism fsat : (S, α) → (Θ, ζ) sending

a state of (S, α) to the set of (equivalence classes of) formulae it satisfies.

Proof. Define fsat : (S, α) → (Θ, ζ) by fsat(s) = {φ|s ∈ [[φ]]}. The fact that fsat(s)

is a filter follows easily from soundness and the semantics of L, exactly as in the

Kripke machine case. To verify fsat is a homomorphism, we check that for each

a ∈ Σ we have

a · fsat(s) = {φ|a(φ) ∈ fsat(s)}

= {φ|s ∈ [[a(φ)]]}

= {φ|a · s ∈ [[φ]]}

= fsat(a · s)

o(fsat(s)) =
∧

At(fsat(s))

=
∧
{p ∈ O|p ∈ fsat(s)}

=
∧
{p ∈ O|s ∈ [[p]]}

=
∧
{p ∈ O|o(s) ≤O p}

= o(s)

38



To complete the proof, we also need to show uniqueness. Suppose g : (S, α) → (Θ, ζ)

is a homomorphism, and let s ∈ S. We prove φ ∈ fsat(s) iff φ ∈ g(s) by structural

induction on the formula φ.

p ∈ g(s) ⇐⇒ o(g(s)) ≤O p

⇐⇒ o(s) ≤O p

⇐⇒ s ∈ [[p]]

⇐⇒ p ∈ fsat(s)

a(φ) ∈ g(s) ⇐⇒ φ ∈ a · g(s)

⇐⇒ φ ∈ g(a · s)

⇐⇒ φ ∈ fsat(a · s)

⇐⇒ φ ∈ a · fsat(s)

⇐⇒ a(φ) ∈ fsat(s)

φ ∧ ψ ∈ g(s) ⇐⇒ φ ∈ g(s) and ψ ∈ g(s)

⇐⇒ φ ∈ fsat(s) and ψ ∈ fsat(s)

⇐⇒ φ ∧ ψ ∈ fsat(s)

Therefore, for any Moore machine (S, α), there is a homomorphism fsat : (S, α) →

(Θ, ζ), and it is the unique homomorphism from (S, α) to (Θ, ζ). I.e. the machine

(Θ, ζ) is the final Moore machine.

Once again, an analogue of the truth lemma in modal logic [5] holds for the

machine (Θ, ζ), i.e. the formulae of L that a filter F ∈ Θ satisfies as a state of (Θ, ζ)

are exactly those formulae in F .

39



Lemma 4.2 For all φ ∈ L and all F ∈ Θ, F ∈ [[φ]] ⇐⇒ φ ∈ F .

Proof. By structural induction on the formula φ.

F ∈ [[p]] ⇐⇒ o(F ) ≤O p

⇐⇒
∧

At(F ) ≤O p

⇐⇒ p ∈ F

F ∈ [[a(φ)]] ⇐⇒ a · F ∈ [[φ]]

⇐⇒ φ ∈ a · F

⇐⇒ φ ∈ {ψ|a(ψ) ∈ F}

⇐⇒ a(φ) ∈ F

F ∈ [[φ ∧ ψ]] ⇐⇒ F ∈ [[φ]] and F ∈ [[ψ]]

⇐⇒ φ ∈ F and ψ ∈ F

⇐⇒ φ ∧ ψ ∈ F

Note that
∧
At(F ) ≤O p is equivalent to p ∈ F because F is a filter, hence up-closed,

and q ≤O p implies q ≤ p in L/≤ by (≤p).

Theorem 4.6 (Completeness) If s ∈ [[φ1]] ⇒ s ∈ [[φ2]] for all Moore machines (S, α),

then ` φ1 ≤ φ2.

Proof. Exactly as in the Kripke machine case. Assume 6` φ1 ≤ φ2. It suffices to find

s ∈ (S, α) with s ∈ [[φ1]] but s 6∈ [[φ2]].

Let Fφ1 = {ψ|φ1 ≤ ψ}. This is clearly a filter, hence a state of (Θ, ζ). Note that

φ1 ∈ Fφ1 , but φ2 6∈ Fφ1 , so by Lemma 4.2, Fφ1 ∈ [[φ1]] but Fφ1 6∈ [[φ2]].

40



Consequences of Finality

The final Moore machine has a number of remarkable properties. The first is often

called the coinductive proof principle [15], which states that two states of the final

automaton are bisimilar iff they are identical (for more on coinduction, see [8] and

[16]).

Theorem 4.7 Let ∆Θ = {〈F, F 〉 | F ∈ Θ} be the diagonal relation on Θ. Then any

for bisimulation R ⊆ Θ×Θ, R ⊆ ∆Θ. Equivalently, ∼Θ= ∆Θ.

Proof. Let R ⊆ Θ×Θ be a bisimulation on (Θ, ζ), then p1 : R→ Θ and p2 : R→ Θ

are parallel homomorphisms, and hence p1 = p2 by finality of (Θ, ζ), so R ⊆ ∆Θ.

Moreover, for any Moore machine (S, α), the unique map to fsat : (S, α) → (Θ, ζ)

identifies all bisimilar states in S.

Theorem 4.8 Let (S, α) be a Moore machine, and fsat : (S, α) → (Θ, ζ) the unique

homomorphism to (Θ, ζ) described earlier. For all s, s′ ∈ S,

s ∼S s
′ iff fsat(s) = fsat(s

′)

Thus fsat(s) represents the ∼S-equivalence class of the state s.

Proof. Let s ∼S s
′, then there exists a bisimulation R ⊆ S × S with 〈s, s′〉 ∈ R. By

Proposition 2.4, fsat(R) is a bisimulation on (Θ, ζ), and 〈fsat(s), fsat(s
′)〉 ∈ fsat(R)

by definition. However, fsat(R) ⊆ ∆Θ as we have just shown, and hence fsat(s) =

fsat(s
′).

Conversely, f−1
sat(∆Θ) is a bisimulation on (S, α) by Proposition 2.4. But then by

definition, if fsat(s) = fsat(s
′), then 〈s, s′〉 ∈ f−1

sat(∆Θ), and hence s ∼S s
′.

41



Corollary 4.1 The logic L is adequate and expressive. That is, given any Moore

machine (S, α) and s, s′ ∈ S, the states s and s′ are bisimilar iff they satisfy the

same L formulae, i.e. {φ | s ∈ [[φ]]} = {φ | s′ ∈ [[φ]]} iff s ∼S s
′.

Given any filter F ∈ Θ, the subautomaton of (Θ, ζ) generated by F , which we

denoted 〈F 〉(Θ,ζ), is in fact the minimal Moore machine containing a state whose

L-theory is F .

Theorem 4.9 Suppose (S, α) is a Moore machine with some state s ∈ S such that

fsat(s) = F . Then 〈F 〉(Θ,ζ) has at most | S | states.

Proof. Consider the subautomaton of (S, α) given by 〈s〉(S,α), which certainly has

fewer than | S | states. By Theorem 3.2, f(〈s〉(S,α)) = 〈fsat(s)〉(Θ,ζ) = 〈F 〉(Θ,ζ).

Hence 〈F 〉(Θ,ζ) can have no more states than 〈s〉(S,α).

So the final Moore machine (Θ, ζ) is a universal machine, in a very precise sense.

Given any state of any Moore machine, there is a state of (Θ, ζ) which realizes the

same behaviour, and moreover, the submachine generated by that state is a minimal

automaton with a state displaying that behaviour.

42



Chapter 5

Machine Reconstruction

Traditionally in automata theory, one has a given machine and wants to understand

its behaviour. In machine learning, one observes aspects of a machine’s behaviour,

and attempts to reconstruct the machine, or at least an approximation of it.

Suppose that for some state s of some Moore machine (S, α), we are given infor-

mation about its behaviour in the form of its L-theory, Φ. Without knowledge of

any of the structure of (S, α), we can reconstruct a machine with a state bisimilar

to s by generating the subautomaton 〈Φ〉(Θ,ζ) of (Θ, ζ).

This subautomaton can be generated by defining transitions on Φ via a · Φ =

{ϕ | a(ϕ) ∈ Φ}, and recursively repeating this procedure on Ψ = δ(Φ, a) for each

a ∈ Σ until no new states are generated. As one would expect, o(Ψ) =
∧

O At(Ψ).

Algorithm 5.1

Reconstruct(Φ)

if o(Φ) is already defined

end

else

define o(Φ) =
∧
At(Φ)

43



foreach a ∈ Σ

define δ(Φ, a) = a · Φ

foreach a ∈ Σ

Reconstruct(a · Φ)

Note that so long as Φ is the L-theory of a state of some finite state Moore

machine, this procedure is guaranteed to terminate by Theorem 4.13.

Example 5.1 Fix Σ = {a, b}, and O = P({p, q}), so that we are dealing with

Kripke machines with a binary input alphabet and two observations. If we define a

filter Φ ∈ Θ by the grammar

Φ = ∅ | p | a(ϕ) | ϕ1 ∧ ϕ2

and apply Algorithm 5.1, we generate a Kripke machine from Φ as follows.

GFED@ABCΦ

The algorithm proceeds by first defining o(Φ) =
∧
O =

⋃
{∅, p} = {p}, then setting

δ(Φ, a) = {ϕ | a(ϕ) ∈ Φ} = Φ, and δ(Φ, b) = {ϕ | b(ϕ) ∈ Φ} = ∅.

GFED@ABCΦ

a
�� b

++GFED@ABC?>=<89:;∅

Now the algorithm runs again on a·Φ = Φ, but o(Φ) = {p}, so this brach terminates.

However, on b · Φ = ∅, it sets o(∅) = ∅ and then defines δ(∅, a) = {ϕ | a(ϕ) ∈

∅} = ∅ and δ(∅, b) = {ϕ | b(ϕ) ∈ ∅} = ∅.

GFED@ABCΦ

a
�� b

++GFED@ABC?>=<89:;∅

a,b
		

44



When the algorithm runs again on ∅, o(∅) is already defined and the algorithm then

terminates, having constructed the Kripke machine above. It is easy to check that

the proposition below holds for both states of this machine.

Proposition 5.1 The L-theory of the state corresponding to Φ is exactly Φ.

Proof. Immediate by Lemma 4.2.

Approximation

Our aim is to try and use this procedure in a situation where the L-theory of a state

is only partially known. In particular, we are interested in adapting this reconstruc-

tion procedure to a scenario where Φ is only a finite subset of the L-theory of s.

However, in this situation Φ only contains partial information, so in general we

want to reconstruct a machine from Φ with a state whose L-theory is much richer

than Φ. By Proposition 5.1, we know that Algorithm 5.1 will not suit this purpose.

Algorithm 5.2 below generalizes Algorithm 5.1 by incorporating a decision func-

tion m : Pfin(L) × Pfin(L) → {0, 1} which decides whether two different sets of

formulae represent partial information about the same state. The question of how

best to define this function is still quite open, and will be discussed in more detail

at the end of this section.

The new algorithm proceeds in the same manner as Algorithm 5.1, but before

generating a new state, the function m is called to determine whether the partial L-

theory corresponding to any previously generated state is consistent with the partial

L-theory of the new state. If this is indeed the case, then the two states are merged.

Note that we can recover Algorithm 5.1 by defining m(Φ,Ψ) = 1 iff Φ = Ψ.

45



Algorithm 5.2

Reconstruct(Φ)

if o(Φ) is already defined

end

else

define o(Φ) =
∧
At(Φ)

foreach a ∈ Σ

foreach Ψ such that o(Ψ) is defined (*)

if m(a · Φ,Ψ) = 1

define δ(Φ, a) = Ψ

break

if δ(Φ, a) is undefined

define δ(Φ, a) = a · Φ

foreach a ∈ Σ

Reconstruct(a · Φ)

In this algorithm we need to put an ordering on the generated states. Suppose

that pairs of generated states and their outputs are stored in a list ordered from

most to least recently defined, and that the loop (*) in Algorithm 5.2 traverses this

list in that order. Furthermore, each loop through the elements of Σ must use some

fixed order as well. In our examples we will use alphabetical order.

One obvious choice for m is to define m(Φ,Ψ) = 1 iff Φ ⊆ Ψ. This means that

when defining δ(Φ, a), if there is a state Ψ already generated whose L-theory in-

cludes a · Φ = {ϕ | a(ϕ) ∈ Φ}, then we define δ(Φ, a) = Ψ.

To make the algorithm most effective, we can flatten the set Φ before running it.

This procedure removes all conjunctions in each formula and replaces it by an equiva-

46



lent list of conjunction-free formulae. Let a({φ1, φ2, · · ·φk}) = {a(φ1), a(φ2), · · · a(φk)},

for each a ∈ Σ. We define the ’deconjunction’ of a single formula by induction.

deconj(true) = {true}

deconj(p) = {p}

deconj(a(φ)) = a(deconj(φ))

deconj(φ1 ∧ φ2) = deconj(φ1) ∪ deconj(φ2)

Using our inference rules and soundness, it is easy to see that s ∈ [[φ1 ∧ φ2]]

iff s ∈ [[φ1]] and s ∈ [[φ2]], and also that s ∈ [[a(φ1 ∧ φ2)]] iff s ∈ [[a(φ1)]] and s ∈

[[a(φ2)]] for each a ∈ Σ. Hence this procedure is sound, and we define flatten(Φ) =⋃
ϕ∈Φ deconj(ϕ).

Example 5.2 Fix Σ = {a, b}, O = P({f})op, and m(Φ,Ψ) = 1 iff Φ ⊆ Ψ. Consider

the machine below, where we indicate that o(s) = {f} by writing s inside a doubled

circle, and o(s) = ∅ by writing s inside a single circle.

GFED@ABC?>=<89:;s2

a




b

��

GFED@ABCs1

a

44

b ** GFED@ABCs3

a

TT

b

LL

Now we identify some finite subset of the L-theory of s1 to run Algorithm 5.2 on.

Take, for example, Φ = {∅, af, aaf, bbf, b∅, ba∅, aba∅}.

47



a · Φ = {f, af, ba∅}

_^]\XYZ[Φ

a
44

b **
b · Φ = {∅, bf, a∅}

The algorithm proceeds by generating the first two states exactly as in Algorithm 5.1.

Note that since neither a ·Φ nor b ·Φ are subsets of Φ, two new states are generated.

aa · Φ = {f}

_^]\XYZ[WVUTPQRSa · Φ

a
66

b //
ab · Φ = {a∅}

_^]\XYZ[Φ

a

66

b
(( _^]\XYZ[b · Φ

a
00

b ((

ba · Φ = {n}

bb · Φ = {f}

However, at this stage, since aa·Φ and bb·Φ are both subsets of a·Φ, δ(a·Φ, a) = a·Φ

and δ(b ·Φ, b) = a ·Φ. Similarly, ab ·Φ ⊆ b ·Φ, and hence δ(a ·Φ, b) = b ·Φ. However

ba ·Φ is a subset of both Φ and b ·Φ, but b ·Φ was generated more recently, and hence

δ(b · Φ, a) = b · Φ.

48



_^]\XYZ[_^]\XYZ[a · Φ

a

��

b

��

_^]\XYZ[Φ

a
55

b )) _^]\XYZ[b · Φ

a

RR

b

KK

The algorithm then terminates since the outputs of a ·Φ and b ·Φ are already defined.

The final product is the machine above, which is an exact reconstruction of the

original machine that Φ was extracted from.

Although in this case the algorithm provided a perfect reconstruction of the

original machine, it can also fail miserably. The example below illustrates this well.

Example 5.3 Fix Σ = {a, b}, O = P({f})op, and m(Φ,Ψ) = 1 iff Φ ⊆ Ψ, as in

Example 5.1. However, let us consider a different subset of the L-theory of s1 as

input to Algorithm 5.2. Let Φ = {∅, af, babf, abbaaf, babb∅, baa∅}, then one can

check that Algorithm 5.2 will reconstruct the machine below.

GFED@ABC?>=<89:;s2

a

��

b ++ GFED@ABCs4

b ++

a

��

GFED@ABCs6

a ++

b

��

GFED@ABCs8

a

��

b

��

GFED@ABCs1

a
88

b && GFED@ABCs3

b

II

a ++ GFED@ABCs5

a

II

b ++ GFED@ABC?>=<89:;s7

a,b

II
GFED@ABC?>=<89:;s9

a,b

II

It is worth noting that the algorithm used in both examples above (Algorithm

49



5.2 with m defined by m(Φ,Ψ) = 1 iff Φ ⊆ Ψ) seems to work best when its input,

Φ, contains most of the short, simple, formulae which a particular state s satisfies,

and few of the longer formulae.

There are many other choices for the function m that have yet to be explored.

For example, one could define m by

m(Φ,Ψ) = 1 ⇐⇒ | Φ4Ψ |
min(| Φ |, | Ψ |)

< 0.2

so that the symmetric difference of Φ and Ψ must be small, relative to the smaller

of the two sets.

If we imagine that Φ is built up from observations about the behaviour of some

machine whose internal structure is unknown, then we could let Φ be a multiset,

and use redundancy to estimate how much information about the behaviour of a

particular state has been observed. Such an estimate would be extremely useful, as

our criterion for merging states could be made less lenient when more information

is available, and more lenient when less information is available.

50



Conclusion

After giving a brief, but detailed review of the foundations of coalgebraic automata

theory, we introduced a modified version of the logic and finality construction in

[6] for Moore machines. Using the finality construction, we showed that the logic

is sound, complete, adequate, and expressive. We also provided a simplified logic

for the special case of Kripke machines which yields exactly the same results. In

addition, we have used the structure of the final Moore machine to devise a (family

of) Moore machine reconstruction algorithm(s), which have potential applications

in machine learning.

It would be interesting to see what kind of analogous logical results hold for

families of automata with probabilistic transitions, since typically the coalgebraic

description of such machines involves an endofunctor which, for set theoretic size

reasons, cannot have a final coalgebra.

The other major direction for future work is how best to refine Algorithm 5.2. In

particular the choice of the functionm is crucial to the performance of the algorithm,

and although some functions seem to perform well on examples, it is not clear how

to evaluate which choices give desirable results most consistently.

51



52



Bibliography

[1] Aczel, P. and Mendler, N., A Final-coalgebra Theorem. Category Theory and

Computer Science, Lecture Notes In Computer Science 389, Springer-Verlag

(1989), pp. 357-365.

[2] Barr M. and Wells C., Category Theory for Computing Science, Third Edition.

Les Publications CRM (1999).

[3] van Benthem, J., A Note on Modal Formulae and Relational Properties. Journal

of Symbolic Logic 40 (1975), pp. 55-58.

[4] van Benthem, J., Modal Reduction Principles. Journal of Symbolic Logic 41

(1976), pp. 301-312.

[5] Blackburn, P., De Rijke, M. and Venema, Yde., Modal Logic. Cambridge Tracts

in Theoretical Computer Science, Cambridge University Press (2001).

[6] Bonsangue, M., Rutten, J. and Silva, A., Coalgebraic Logic and Synthesis of

Mealy Machines. Proceeding of FoSSaCS 2008, Lecture Notes in Computer Sci-

ence 4962, Springer-Verlag (2008), pp. 231-245.

[7] Hasuo, I., Jacobs, B. and Sokolova, A., Generic Trace Semantics Via Coinduc-

tion. Logical Methods In Computer Science 3, Issue 4 (2007), pp. 1-36.

[8] Jacobs, B. and Rutten, J., A Tutorial on (Co)Algebras and (Co)Induction. Bul-

letin of the EATCS 62 (1997), pp. 222-259.

53



[9] Kupke, C., Kurz, A. and Pattinson, D., Algebraic Semantics for Coalgebraic

Modal Logic. Electronic Notes in Theoretical Computer Science 106, Elsevier

(2004).

[10] Kurz, A., Logics Admitting Final Semantics. Lecture Notes in Computer Sci-

ence 2303, Springer-Verlag (2002), pp. 238-249.

[11] Kurz, A. and Pattinson D., Definability, Canonical Models, Compactness for

Finitary Coalgebraic Modal Logic. Electronic Notes in Theoretical Computer Sci-

ence 65, Elsevier (2002).

[12] Milner, R., A Calculus of Communicating Systems. Springer-Verlag (1980).

[13] Park, D., Title Unknown. Slides for Bad Honnef Workshop on Semantics of

Concurrency (1981).

[14] Pattinson, D., An Introduction to the Theory of Coalgebras. Course Notes from

NASSLI 2003, Indiana University (2003).

[15] Rutten, J., Universal Coalgebra: A Theory of Systems. Theoretical Computing

Science 249, Elsevier (2000).

[16] Rutten, J., Automata and Coinduction (and exercise in coalgebra). Report SEN-

R9803, CWI (1998).

54


