
Diagonalization & The Fixed Point Lemma Brendan Cordy

Question: How can we write a statement which is true iff Alice is reading it?

Alice is reading this statement

Ok, that was easy. What about if we’re not allowed to use the word ‘this’? We would like to do
something like...

Alice is reading the statement ‘Alice is reading the statement’

But that doesn’t work. If Alice is reading it, then she’s reading the statement Alice is reading the
statement ‘Alice is reading the statement’, which isn’t the same as Alice is reading the statement,
which our statement above claims she’s reading. This is like trying to write a computer program
that prints its own source code. Simply writing print(stuff) won’t work, because the output won’t
contain the print command, and more print commands will only dig you deeper.

We can use a very clever trick to close the loop. To make it work, we need to allow variables and
substitution in our statements. Something like r(x) = a rabbit eats x is a valid statement, and it
makes sense to substitute other statements for x. If we substitute c = a delicious carrot, then we
obtain r(c) = a rabbit eats a delicious carrot. We can make nonsensical substitutions as well, like
b = the sky is blue, to obtain r(b) = a rabbit eats the sky is blue.

Note that statements in quotes are interpreted literally. For example, the statement a rabbit eats a
delicious carrot means that a rabbit eats a delicious carrot, while a rabbit eats ‘a delicious carrot’
means that there is a rabbit on this piece of paper eating those words quoted above. Similarly, the
statement my favourite variable is the variable x has one variable, while the statement my favourite
variable is ‘the variable x’ has no variables.

Now the crux of the trick. The diagonal function takes any quoted statement ‘s(x)’ and replaces it
with s(‘s(x)’). We call this process diagonalization. Consider, for example, the quoted statement
‘Alice is reading the statement x’. Its diagonalization is Alice is reading the statement ‘Alice is
reading the statement x’, which looks very much like something we’ve tried before. It seems like
we’re not making much progress, but in fact we’re very close to a solution.

The trick is to refer to the diagonal function inside the statement. Consider the following...

Alice is reading the diagonalization of ‘Alice likes x’

That statement is true exactly when Alice is reading the statement Alice likes ‘Alice likes x’. Now
we’ve got the problem cornered. Can you see how to do it? We just need to make the statements
inside and outside the quotes match...

Alice is reading the diagonalization of ‘Alice is reading the diagonalization of x’

That’s it! We’ve closed the loop and created a sentence which is true iff Alice is reading it. Even
better, the construction we’ve just performed is an informal proof of a key part of Gödel’s first
incompleteness theorem, often known as the diagonal lemma or fixed-point lemma. Let’s prove it,
and you’ll see that it’s really the same argument with more formal symbols.

Recall that any formula ψ in a suitable first-order language LA for arithmetic can be encoded as
a Gödel number, denoted pψq. Similarly, any k ∈ N can be decoded to produce an LA-expression
denoted ϕk. These two operations are mutually inverse, that is, pϕkq = k, and ϕpψq = ψ. For the
details of how this can be done, see [1].

We can use these encoding and decoding operations to define the diagonal function, d : N → N,
which can be understood as d(n) = pϕn(n)q, so that d(pψq) = pψ(pψq)q. In fact, a little extra
care is required to give a correct definition, because ϕn may not be a wff with one free variable. We
can get around this problem by simply redefining d(n) = 0 when this problem arises (for simplicity,
let’s assume this is the case in the following), or by letting d(n) = p∀x(x = n → ϕn)q, which is
defined even when ϕn is not a wff. Again, see [1].

One more preliminary remark. From this point on, to promote readability, I will deliberately not
make a distinction between k ∈ N and the term k of LA which designates it. The informal definition
of the diagonal function above, for example, would be written as d(n) = pϕn(n)q, with the overline
on the n omitted.

Fixed-Point Lemma: If T is a first-order theory which represents the diagonal function, then for
any formula ψ(x) with one free variable, there is a sentence γ such that T proves γ ↔ ψ(pγq).

Pf Let δ(x, y) represent the diagonal function, so for every k ∈ N at which pϕk(k)q is well-defined,
T proves the sentence ∀y(δ(k, y)↔ y = pϕk(k)q). Now define β(x) by the formula given below.

β(x) = ∃y(δ(x, y) ∧ ψ(y))

This formula says that the diagonalization of x has property ψ. If ψ(y) means that y is being read
by Alice, then β(x) is precisely the statement there is a y which is the diagonalization of x and y
is being read by Alice. In other words, Alice is reading the diagonalization of x.

Now we substitute pβ(x)q for x in the formula β(x), just as we did before when we wrote Alice is
reading the diagonalization of ‘Alice is reading the diagonalization of x’.

β(pβ(x)q) = ∃y(δ(pβ(x)q, y) ∧ ψ(y))

↔1 ∃y(y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y))

↔2 ∃y(y = pβ(pβ(x)q)q ∧ ψ(y))

↔3 ψ (pβ(pβ(x)q)q)

Therefore, the formula γ = β(pβ(x)q) has the desired property. �

The three equivalences above which link ∀y(δ(pβ(x)q, y)→ ψ(y)) and ψ(pβ(pβ(x)q)q) above need
to be provable in T , so to properly complete the proof, we must show these formally.

Note that pϕpβ(x)q(pβ(x)q)q and pβ(pβ(x)q)q are abbreviations for the same term of the language
LA, by definition of the encoding and decoding operations, and hence the equivalence ↔2 holds
because the two sentences involved are literally the same sentence in the object language. The two
other equivalences are shown in the appendix, using natural deduction in the style of [3]. If you’re
not familiar with this style of writing formal deductions, it should be an easy exercise to rewrite
them in another style.

Applying this lemma to the formula ¬Pr(x), where Pr(x) is a provability predicate for T , yields a
Gödel sentence, and applying it to the negation of Rosser’s modified provability predicate yields a
Rosser sentence. In this sense, the fixed-point lemma is ‘the trick’ in these incompleteness results,
and ‘the work’ is in the process of arithmetizing formulas and deductions in T .

Motivation & Acknowledgements

I’ve spent a long time thinking about classical incompleteness results, and at some point it occurred
to me that I ought to be able to prove the fixed-point lemma on the spot, but I couldn’t remember
how to come up with the formula β(x). I recalled reading [2], which contains the puzzle and solution
given on the first page, and I knew that the solution to this puzzle was an informal argument for the
fixed-point lemma, so I decided to make the connection explicit by working out the corresponding
rigorous argument. This article is the result.

References

[1] B. Cordy. Tarksi’s Undefinability Theorem. Available at qubd.github.io, 2015.

[2] R. Smullyan. Satan, Cantor, and Infinity: Mind-Boggling Puzzles. Knopf, 1992.

[3] D. Van Dalen. Logic and Structure, 4th Ed. Springer, 2008.

Appendix - Formal Derivations of Equivalences ↔1 and ↔3

Both directions of↔1 can be shown by using the same argument. With the abbreviations D(y) for
δ(pβ(x)q, y), E(y) for y = pϕpβ(x)q(pβ(x)q)q, and P (y) for ψ(y), we need to show both directions of
∃y(D(y) ∧ P (y))↔ ∃y(E(y) ∧ P (y)), and we’re free to use the assumptions ∀y(D(y)→ E(y)) and
∀y(D(y)← E(y)) (because T represents the diagonal function). The derivations are given without
abbreviations below, though the abbreviations were of great help while constructing them.

[∃y(δ(pβ(x)q, y) ∧ ψ(y))]2

∀y(δ(pβ(x)q, y)→ y = pϕpβ(x)q(pβ(x)q)q)

δ(pβ(x)q, y)→ y = pϕpβ(x)q(pβ(x)q)q
∀E

[δ(pβ(x)q, y) ∧ ψ(y)]1

δ(pβ(x)q, y)
∧E

y = pϕpβ(x)q(pβ(x)q)q
→E

[δ(pβ(x)q, y) ∧ ψ(y)]1

ψ(y)
∧E

y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y)
∧I

∃y(y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y))
∃I

∃y(y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y))
∃E1

∃y(δ(pβ(x)q, y) ∧ ψ(y))→ ∃y(y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y))
→I2

[∃y(y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y))]2

∀y(y = pϕpβ(x)q(pβ(x)q)q→ δ(pβ(x)q, y))q)

y = pϕpβ(x)q(pβ(x)q)q→ δ(pβ(x)q, y)
∀E

[y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y)]1

y = pϕpβ(x)q(pβ(x)q)q
∧E

δ(pβ(x)q, y)
→E

[y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y)]1

ψ(y)
∧E

δ(pβ(x)q, y) ∧ ψ(y)
∧I

∃y(δ(pβ(x)q, y) ∧ ψ(y))
∃I

∃y(δ(pβ(x)q, y) ∧ ψ(y))
∃E1

∃y(y = pϕpβ(x)q(pβ(x)q)q ∧ ψ(y))→ ∃y(δ(pβ(x)q, y) ∧ ψ(y))
→I2

The equivalence↔3 is easier to derive. As above, when constructing or interpreting the derivations
it helps to introduce abbreviations for the relevant predicates, and the term pβ(pβ(x)q)q as well.

[∃y(y = pβ(pβ(x)q)q ∧ ψ(y))]2

[y = pβ(pβ(x)q)q ∧ ψ(y)]1

y = pβ(pβ(x)q)q
∧E

[y = pβ(pβ(x)q)q ∧ ψ(y)]1

ψ(y)
∧E

ψ(pβ(pβ(x)q)q)
RI4

ψ(pβ(pβ(x)q)q)
∃E1

∃y(y = pβ(pβ(x)q)q ∧ ψ(y))→ ψ(pβ(pβ(x)q)q)
→I2

x = x
RI1

pβ(pβ(x)q)q = pβ(pβ(x)q)q
RI4

[ψ(pβ(pβ(x)q)q)]1

pβ(pβ(x)q)q = pβ(pβ(x)q)q ∧ ψ(pβ(pβ(x)q)q)
∧I

∃y(y = pβ(pβ(x)q)q ∧ ψ(y))
∃I

ψ(pβ(pβ(x)q)q)→ ∃y(y = pβ(pβ(x)q)q ∧ ψ(y))
→I1

