
On the Existence of Regular Approximations 1
Brendan Cordy a Kai Salomaa baDepartment of Mathematics and Statistics, McGill University,805 Sherbrooke W., Montreal, Quebec H3A 2K6, CanadabSchool of Computing, Queen's University, Kingston, Ontario K7L 3N6, CanadaAbstractWe approximate context-free, or more general, languages using �nite automata. Thedegree of approximation is measured, roughly speaking, by counting the number ofincorrect answers an automaton gives on inputs of lengthm and observing how thesevalues behave for large m. More restrictive variants are obtained by requiring thatthe automaton never accepts words outside the language or that it accepts all wordsin the language. A further distinction is whether a given (context-free) languagehas a regular approximation which is optimal under the measure of approximationdegree or an approximation which is arbitrarily close to optimal. We study closureand decision properties of the approximation measure.Key words: regular languages, degree of approximation, decidability

1 IntroductionDi�erent ways of measuring levels of reliability of �nite automata have beenconsidered in [9,10]. By allowing a �nite automaton to give incorrect answerson some inputs we may obtain signi�cant savings in the state-complexityof a language. Here, instead of comparing state-complexity of representa-tions with di�erent reliability, we consider various ways to give approximaterepresentations of non-regular languages using �nite automata. Strong non-approximability results for certain non-regular languages have been previouslyobtained in [7].Email addresses: bcordy@math.mcgill.ca (Brendan Cordy),ksalomaa@cs.queensu.ca (Kai Salomaa).1 A preliminary version of this paper appeared in DCFS 2006 [4].Preprint submitted to Elsevier 26 March 2007

For the purpose of evaluating how well a language is approximated by anotherlanguage, we need a way to measure the similarity of two languages. The exis-tence of \good" approximations for non-regular languages naturally dependsvery much on the measures used to compare languages. We present examplesfor di�erent types of measurements where good regular approximations ex-ist or do not exist, respectively. We use variants of the measures consideredin [7,9,10]. The measures, roughly speaking, count the number of inputs ofa given length for which a �nite automaton gives an incorrect answer, andthen see how this value behaves for long inputs in the limit. We make somemodi�cations to the earlier de�nitions, mainly, in order to avoid trivial goodapproximations. This issue did not occur in [7,9,10], perhaps, because the workthere was concerned on the one hand with negative approximability results,that is results about the non-existence of approximations, and on the otherhand with worst-case results for the descriptional complexity of approxima-tions having di�erent reliability. Thus, the work in [7,9,10] was for the mostpart not dealing with positive results on the existence of approximations.We distinguish approximations of a language L by requiring that the approxi-mation has to contain all strings in L (top approximation); the approximationmust be included in L (bottom approximation); or by imposing no restriction(mixed approximation). A further distinction is whether L has an approx-imation that is optimal under the approximation degree or approximationsthat can become arbitrarily close to optimal (an approximation in the limit).We study closure properties of the di�erent variants of approximability andestablish an undecidability result.Other types of regular approximations of languages have been considered e.g.in [1{3,5,6,12{14]. The automaticity descriptional complexity measure [14]and the model of cover automata [3] count the number of states of �niteautomata that recognize approximations of the language to be represented.Automaticity is a descriptional complexity measure for arbitrary languageswhereas cover automata are used as an implementing method to reduce thesize of automata that represent �nite languages. These models di�er from ourapproach in that the approximations are required to be correct for all wordsup to length n (with variable n) and do not consider the number of incorrectanswers on words longer than n. The paper [6] investigates minimal coversand the approach is quite di�erent from the measures considered here, aswell. The paper [1] considers metrics that are required to have an additivityproperty with respect to catenation. This property guarantees that the metricpreserves regularity of languages which means it would not be useful for ourcurrent purpose. In the context of probabilistic languages, it is common to usethe relative entropy as a distance measure between languages [5]. Work alongmore practical lines on regular approximations of context-free languages canbe found in [11]. 2

The work [12,13] investigates lower and upper rough set approximations thatconverge to a given language L. Interestingly, it turns out that in most casesthe lower and upper approximations of context-free languages are regular. Itwould be a useful topic for further research to determine how the rough setapproximations relate to the measures we consider here.2 Degree of approximationIn the following � denotes a �nite alphabet and �� is the set of all �nite stringsover �. The length of a string w is the number of occurrences of symbols of� in w and it is denoted jwj. The reversal (or mirror-image) of w 2 �� isdenoted wR. For L � �� and m � 0, we denote by jLjm the number of stringsof length m in L. An alphabet is said to be minimal for a language L � �� ifeach symbol of � occurs in some string of L. The symmetric di�erence of setsA and B is A4B. The cardinality of a �nite set is jAj.A deterministic �nite automaton (DFA) is a tupleM = (�; Q; q0; QF ; �) where� is the input alphabet, Q is the �nite set of states, q0 2 Q is the startstate, QF � Q is the set of accepting states, and � : Q � � �! Q is thestate transition function. The function � is extended in the natural way toa function Q � �� �! Q and the language recognized by the DFA M isL(M) = fw 2 �� j �(q0; w) 2 QFg. Note that a DFA as de�ned aboveis complete, i.e., �(q; �) is de�ned for all q 2 Q, � 2 �. The deterministic�nite automata recognize exactly all the regular languages. For all unexplainednotions in language theory we refer the reader e.g. to [8,15].For integers m;n � 0, we de�ne the \non-zero minimum" of m and n asmin1(m;n) = max(min(m;n); 1).When a �nite automaton A is used as an approximation of a language L, thevalue j L(A)4L jm gives the number of strings of length m for which A givesan incorrect answer. More generally, if R and L are two languages over �, wede�ne the degree of approximation of L by R as the quantityApp�(R;L) = lim supn!1 j R4 L jnmin1(j L jn; j �� � L jn) (1)When the alphabet � is known from the context we denote the approximationdegree simply as App(R;L). It can be noted that the degree-of-approximationrelation is not symmetric. In our terminology, a degree-of-approximation value(close to) zero means a \good approximation". The de�nition of App(R;L)does not require that R is regular, however, in the following we are mainlyconcerned with cases where the language used as an approximation is regular.3

The relation (1) resembles the reliability measure of [10] or the approximationmeasure used in [7]. These measures use the number of all words of lengthn, j �� jn (or equivalently j � jn), as the denominator. The main reason forintroducing the de�nition (1) is that if we would use lim supn!1 j R4L jnj �� jn as theright side of (1), all very \dense" languages would always have �� as a goodapproximation and, similarly, all \sparse" languages could be approximatedby ;. Above by a dense (respectively, sparse) language we mean a languageL such that the limit of j �� � L jn (respectively, j L jn) divided by j�jnapproaches zero when n approaches in�nity.In fact, the degree of approximation can be thought of as a measure of how wellsome language R approximates L relative to the best trivial approximation(; or ��). If we were to use the maximum of j L jn and j �� � L jn in thedenominator in place of the minimum, this could be viewed as comparing anapproximation relative to the worse of the two trivial approximations.In (1) we use the non-zero minimum in the denominator because it is possiblethat min(j L jn; j �� � L jn) is zero. In particular, if L contains no words oflength n (or all words of length n) where n ranges over in�nitely many non-periodic values, this could cause the approximation degree to become in�nitefor any regular language. This could happen even if L is very sparse, in whichcase ; would intuitively be a \reasonably good" approximation of L.First we consider the question of what values the approximation degree canhave. The below example gives a construction showing that App(R;L) withR regular and L context-free can have any rational value between 0 and 1.Example 2.1 Let � = f0; 1; b; cg. For any integers 0 � x � n we con-struct a regular language R and a context-free language L over � such thatApp(R;L) = xn .Let f : f1; : : : ; ng �! f0; 1gr be a bijective mapping where r = dlogne. Wede�ne L = n[i=1 f(i)fbjck j j 6= k; j; k � 0g:All strings in L begin with a sequence of r symbols 0 and 1, followed by astring of b's and c's. Let 0 � k � n and de�neRk = k[i=1 f(i)b�c�:Let u = r+2m, m � 1. All strings of L having length u begin with a sequenceof r symbols 0 and 1, and followed by a string of i symbols b and j symbols cwhere i+ j = 2m and i 6= j. Thus,j L ju = n � (2m): (2)4

The set j Rk 4 L ju has all strings of L of length u beginning with f(i),k < i � n, and for any 1 � i � k it contains one string f(i)bjcj, where j = m.Thus,j Rk 4 L ju = (n� k) � (2m) + k: (3)Next let v = r+2m�1, m � 1. Strings of L having length v again begin witha sequence of r symbols 0 and 1, followed by all strings in b�c� having length2m� 1. Thus,j L jv = n � (2m): (4)Also, similarly as above it is easy to see thatj Rk 4 L jv = (n� k) � (2m): (5)Always when i > r, j L ji < j �� ji. Hence using (2), (3), (4), and (5), we seethat the (r + 2m)th term in the limit on the right side of (1) is 2m(n�k)+k2mn andthe (r + 2m� 1)th term is 2m(n�k)2mn . Thus as the limit we obtainApp(Rk; L) = n� kn :Since k can be an arbitrary integer between 0 and n, the claim follows.Similar to Example 2.1 we can, of course, construct languages R and L suchthat App(R;L) is any rational number greater than one. This can be doneby making R 4 L su�ciently large, and this would correspond to situationswhere R is a bad approximation of L.Next we de�ne what we mean by \good" regular approximations of a lan-guage L. We distinguish the notions of top approximation that contains L,bottom approximation that is contained in L and mixed approximation (orjust approximation) that can have any relation with L.De�nition 2.1 Let L � ��. The language L has a regular m-approximation(mixed approximation) if there exists a regular language R such that App(R;L) =0. We say that L has a regular t-approximation, or top approximation, (respec-tively, b-approximation, or bottom approximation) if above R can be chosensuch that L � R (respectively, R � L).The language L is said to have a regular m-approximation in the limit if forany � > 0 there exists a regular language R� such that App(R�; L) < �. Againwe say that L has a regular t-approximation (respectively, b-approximation)5

in the limit if above R� can always be chosen such that L � R� (respectively,R� � L).In the following, we call regular x-approximations simply x-approximations,where x 2 fm; b; tg. Note that any t-approximation or b-approximation is byde�nition also an m-approximation.We observe that it is possible that L � �� does not have an x-approximationwhen viewed as a language over �, but L has an x-approximation over somelarger alphabet. For example, choose � = fa; bg andL1 = �� � fanbn j n � 0g:Now for all n � 1, min1(jL1jn; j�� � L1jn) = 1, and for any regular languageR the value of App�(R;L1) cannot be zero. On the other hand, consider L1 tobe a language over the alphabet
 = fa; b; cg and choose R1 = fa; bg�. Nowfor large values of n, jL1jn � j
� � L1jn and hence App
(R1; L1) = 0.The above situation is caused by the fact that jL1jn, n � 0, is close to j��jnwhere � is the alphabet containing all symbols occuring in words of L1.Lemma 2.1 Let L � �� where � is the minimal alphabet for L and x 2fm; b; tg. If there is a constant n0 such that jLjn � 12 j��jn for all n � n0, thenL has an x-approximation when viewed as a language over � if and only if Lhas an x-approximation when viewed as a language over any extension of �.Proof. When n � n0, the term in the denominator of (1) will be jLjn (or 1),and this holds independently of whether L is viewed as a language over � orover some extension of �.Lemma 2.1 means, roughly speaking, that extending the alphabet does nota�ect the existence of approximations, so long as the language in questioncontains at most half of the words of any given length in the original alpha-bet. In the following sections we often implicitly rely on Lemma 2.1 in ourconstructions.To conclude this section we recall a result from [7]. DenoteLmajority = fw 2 fa; bg� j w has more a's than b's g:In [7] it is shown that for any regular language R � ��,limn!1 j R4 Lmajority jnj �� jn = 12 :6

Using our de�nitions, this gives the following corollary. Note that the propertyof having anm-approximation in the limit de�nes the largest class of languagesamong the di�erent properties considered in De�nition 2.1.Corollary 2.1 [7] The language Lmajority does not have an m-approximationin the limit.3 Di�erent types of approximationsWe show that the classes of languages having di�erent types of approximationsas introduced in De�nition 2.1 are distinct. First we show that there existlanguages having top approximations but no bottom approximations and viceversa. We consider the linear context-free languageT = faibj j i; j � 0; i 6= jg (6)Example 3.1 We show that Rt = a�b� is a t-approximation of T . We notethat T � Rt and j Rt 4 T jn, n � 0, is always 0 or 1. The number of stringsin T of length m is either m or m+ 1 and clearly j T jm < j �� � T jm, for allm � 2. Thus App(Rt; T) = lim supm!1 1j T jm � lim supm!1 1m = 0:Lemma 3.1 The language T from (6) has no b-approximation.Proof. Let Rb be any regular language such that Rb � T . It is su�cient toshow that App(Rb; T) > 0.Let � = fa; bg and M = (�; Q; q0; QF ; �) be a complete DFA that recognizesRb. Consider computations of M on strings in a� and �nd the �rst state thatrepeats. That is, we �nd 0 � i < jQj and 0 < j � jQj such that �(q0; ai) = p1and �(p1; aj) = p1. Since M is complete, the state p1 always exists.Now we consider computations of M starting from state p1 on strings in b�and �nd the �rst cycle. We �nd 0 � k < jQj and 0 < m � jQj such that�(p1; bk) = p2 and �(p2; bm) = p2.We choose an integer r as follows. If k � i, then r = i� k. If k > i, then wechoose r to be the smallest integer such thatj divides k � i + r: (7)7

The integer r can always be found such that r � jQj. Now there exists p3 2 Qsuch that for all x; y � 0, we have�(q0; ai+xjbk+ym+r) = p3: (8)By (7), we can choose x such that i + xj = k + r + 0 � m. Thus if p3 is anaccepting state, Rb = L(M) contains some string not in T and Rb is not ab-approximation. Hence p3 cannot be an accepting state and from (8) we knowthat Rb does not contain any strings of the form ai+xjbk+ym+r, where x; y � 0.Let z be an arbitrary positive integer and denoten = i + k + r + z � j �m:We know that T contains, in total, n or n + 1 strings of length n. By (8) weknow that the following strings of length n cannot be in Rb:aibk+r+zjm; ai+jmbk+r+(z�1)jm; : : : ; ai+zjmbk+r;and it follows that j Rb4 T jn � z + 1. Since for large n, j T jn < j �� � T jn,we getApp(Rb; T)= lim supn!1 j Rb 4 T jnj T jn � lim supn!1 j Rb 4 T jnn+ 1� lim supz!1 z + 1i+ k + r + z � j �m+ 1 = 1jm > 0:
The above proof shows that the value of App(Rb; T) is positive, but does notgive any positive lower bound for it. Indeed it is easy to see that the languageT has a b-approximation in the limit. If a DFA Mk checks that the inputis of the form aibj where i 6� j modulo some of the integers 2; : : : ; k, thenL(Mk) � T and for large enough k, App(L(Mk); T) becomes smaller than anygiven positive constant.Above we have seen that the language T has a t-approximation but no b-approximation. This naturally begs the question whether there exists a lan-guage with a b-approximation but no t-approximation. The following corre-spondence between b- and t-approximations turns out to be useful.Proposition 3.1 Let L be a language over the alphabet �.(i) If L has a t-approximation, then �� � L has a b-approximation.(ii) If L has a b-approximation, then �� � L has a t-approximation.8

Proof. Assume thatRt is a regular language such that L � Rt and App(Rt; L) =0. We observe that (�� � L)4 (�� �Rt) = L4Rt = Rt � L. Thus,App(�� � Rt;�� � L)= lim supm!1 j (�� �Rt)4 (�� � L) jmmin1(j �� � L jm; j L jm)= lim supm!1 j Rt 4 L jmmin1(j L jm; j �� � L jm) = App(Rt; L) = 0:This proves (i) since �� � Rt � �� � L and �� � Rt is regular. The case (ii)is completely symmetric.Now Example 3.1, Lemma 3.1 and Proposition 3.1 give the following.Corollary 3.1 With T as in (6), the language ��� T has a b-approximationbut no t-approximation.Next we address the question of whether there exist languages having anm-approximation but no b- or t-approximations. In the following let � =fa; b; c; dg and denoteX = faibi j i � 0g [fcidj j i 6= j; i; j � 0g (9)Example 3.2 The language c�d� is an m-approximation of X. To see this weobserve that for any even length 2n, c�d� contains all strings of X except anbn,and for any odd length 2n + 1, c�d� contains all strings of X. Similarly, forany even length 2n, c�d� contains the string cndn not in X and for any oddlength 2n + 1, all strings of length 2n + 1 in c�d� are also in X. Since for allnon-negative integers n, j X jn = n+ 1, we getApp(c�d�; X) � lim supn!1 2n+ 1 = 0:Lemma 3.2 The language X as in (9) does not have a b-approximation or at-approximation.Proof. First we show that X does not have a b-approximation. Let Rb beany regular language such that Rb � X and let M be a complete DFA havingq states, that recognizes Rb. Exactly as in the proof of Lemma 3.1 we can �ndintegers i; j; k;m; r � q, where j divides (k � i + r) such that M reaches thesame state p after reading any string ci+xjdk+ym+r independently of the valuesx; y � 0, and it is then observed that p cannot be an accepting state. Thensimilarly as in the proof of Lemma 3.1 we can calculate that App(Rb; X) is atleast 1j�m . The only di�erence in the estimation is that now, for any length n,X contains exactly n+ 1 strings of length n, and the value n+ 1 was used inthe estimation for the lower bound in the proof of Lemma 3.1.9

Next we show that the language X cannot have a t-approximation. Assumethat Rt is a regular language, X � Rt and let M = (�; Q; q0; QF ; �) be acomplete DFA recognizing Rt. We consider computations of M on strings ofa� and �nd the �rst cycle. That is, we �nd 0 � i < jQj, 1 � m � jQj suchthat for some p1 2 Q, �(q0; ai) = p1 and �(p1; am) = p1.Then we consider computations of M starting in state p1 on strings in b� and�nd the �rst cycle. That is, we �nd 0 � j < jQj and 1 � n � jQj such thatfor some p2 2 Q, �(p1; bj) = p2 and �(p2; bn) = p2.Thus for all x; y � 0, �(q0; ai+xmbj+yn) = p2. For large values of x, i+xm > j.Since X � L(M) and X contains all strings arbr, r � 0, this implies thatan accepting state must be reachable from p2 by reading a string of b's. Thusthere exists k < jQj and p3 2 QF such that for all x; y � 0,�(q0; ai+xmbj+k+yn) = p3: (10)Let z be a positive integer and denotenz = i + j + k + z �m � n:By (10) we know that M must accept the following strings of length nz,aibj+k+zmn; ai+mnbj+k+(z�1)mn; : : : ; ai+zmnbj+k:At most one of the above z + 1 strings can be in X and hence we concludethat for any integer nz, j L(M)4X jnz � z. Now we getApp(Rt; X)� lim supz!1 j Rt 4X jnzmin1(j X jnz ; j �� �X jnz)� lim supz!1 z1 + i + j + k + zmn = 1mn > 0:
For easier readability, the language X used in Example 3.2 and Lemma 3.2 isde�ned over a four letter alphabet. By using a simple coding, exactly the sameargument can be used to show that there is a language over a binary alphabethaving an m-approximation but no b-approximation or t-approximation.Next we show that there exist context-free languages that do not have m-approximations, or even m-approximations in the limit. A convenient languagefor this purpose isL0 = fakbk j k � 0g: (11)10

Lemma 3.3 Let � = fa; bg. The language L0 does not have anm-approximationin the limit.Proof. Observe for all n � 1, min1(j L0 jn; j ���L0 jn) = 1, and we have forany language R,App(R;L0) = lim supn!1 j R4 L0 jnmin1(j L0 jn; j �� � L0 jn) = lim supn!1 j R4 L0 jn:Clearly then, App(R;L0) < 1 if and only if there is a positive integer n0 suchthat j R4 L0 jn = 0 for all n > n0. But this means that R and L0 di�er onlyon �nitely many strings, and therefore R must be non-regular.It can be argued that L0 has no m-approximations (in the limit) because ofthe fact that L0 has at most one string of any length, and this is of course whatmakes the proof quite easy. We have established the following result in [4].Lemma 3.4 [4] Let L00 = fw$wR j w 2 fa; bg�g. The language L00 does nothave an m-approximation in the limit.The proof of Lemma 3.4 uses a density based argument. The language L00has, roughly, 2n2 words of length n which makes a density argument straight-forward to use. The proof required to show that Lmajority does not have anm-approximation in the limit is considerably more involved, see [7].Combining the results of Lemmas 3.1, 3.2 and 3.3, Corollary 3.1 and Exam-ples 3.1 and 3.2 we can summarize the situation as follows.Theorem 3.1 There exist context-free languages Lt, Lb, Lm and L0 such that(i) Lt has a t-approximation but no b-approximation.(ii) Lb has a b-approximation but no t-approximation.(iii) Lm has an m-approximation but no b-approximation or t-approximation.(iv) L0 does not have anym-approximation, and not even anm-approximationin the limit.Since t- and b-approximations are always alsom-approximations, Theorem 3.1says, in particular, that for any combination of x; y 2 ft; b;mg such that x 6= yand x-approximations are not a special case of y-approximations, there existsa context-free language L such that L has an x-approximation and L does nothave an y-approximation.In Lemma 3.1 we saw that the language T from (6) does not have a b-approximation, and after this result it was observed that T , on the other hand,has a b-approximation in the limit. Using the correspondence between b- and t-approximations as in Proposition 3.1 it follows that there exist languages that11

do not have a t-approximation but do have a t-approximation in the limit.Theorem 3.1 (iv) leaves open the question whether there exist languages hav-ing an m-approximation in the limit and do not have an m-approximation.When using a density argument, as in the proof of Lemma 3.4, to establishthe non-existence of an m-approximation, it is not clear whether the samelanguages can have an m-approximation in the limit, and this is clearly thecase also for the language L0 from Lemma 3.3.When considering the types of approximations introduced in De�nition 2.1,a language has the strongest approximation properties when it has both a t-approximation and a b-approximation. The obvious question is then whethernon-regular languages can have both t- and b-approximations. This is answereda�rmatively by the following example.Example 3.3 Let � = fa; b; c; dg andL1 = faibi j i � 0g [fc; dg�: (12)Denote L2 = fc; dg� and L3 = a�b� [fc; dg�. Clearly L2 � L1 � L3. It is easyto verify that L2 is a b-approximation and L3 is a t-approximation of L1.Corollary 3.2 There exist non-regular context-free languages that have botha t-approximation and a b-approximation.4 Closure propertiesLet x 2 fb; t;mg. If Ri is an x-approximation of Li, 1 � i � n, it is naturalto ask whether �(R1; : : : ; Rn) is an x-approximation for �(L1; : : : ; Ln) when �is some n-ary operation on languages. If � has this property we say that � isx-approximation preserving. More generally we say that � is x-approximabilitypreserving, if �(L1; : : : ; Ln) has an x-approximation whenever the languagesLi, i = 1; : : : ; n, each have an x-approximation. An approximation preservingoperation is always approximability preserving but not vice versa.Lemma 4.1 Complementation is m-approximation preserving. Complemen-tation is not b-approximability preserving or t-approximability preserving.Proof. Similarly as in the proof of Proposition 3.1 it can be computed that ifR is an m-approximation of L then �� �R is an m-approximation of �� �L.Complementation is not b-approximability or t-approximability preserving byLemma 3.1 and Corollary 3.1. 12

Lemma 4.2 Intersection and union are not x-approximability preserving forx 2 fm; b; tg.Proof. Let � = fa; b; c; d; e; fg and let L0 be as in (11). De�ne L1 = fc; dg�[L0 and L2 = fe; fg� [L0. Let R1 = fc; dg� [a�b� and R2 = fe; fg� [a�b�.Then Ri is a t-approximation of Li, i = 1; 2, and, by Lemma 3.3, L1\L2 = L0does not have anm-approximation (and hence no t-approximation). Note thatwe have extended the alphabet but, by Lemma 2.1, the language L0 has nom-approximation even with respect to the extended alphabet.For the case of b-approximability we can choose R01 = fc; dg� and R02 = fe; fg�and we note that R0i is a b-approximation of Li, i = 1; 2.Next we consider union. As in Lemma 4.1 and Proposition 3.1 we observethat R is an x-approximation of L � �� if and only if �� � R is an y-approximation of �� � L where fx; yg = fb; tg. Since intersection can beexpressed in terms of union and complement, from the fact that intersection isnot x-approximability preserving it follows that union is not y-approximabilitypreserving, fx; yg = fb; tg.Next we consider closure under morphisms and inverse morphisms. We needtwo lemmas. The proof of the �rst lemma is basically the same as the proofof Lemma 3.3 { observe that B has at most two strings of any given length.Lemma 4.3 Let � = fa; b; cg. The languageB = fakbk j k � 0g [c�: (13)has no m-approximation.Lemma 4.4 Let � = fa; b; c; dg. The language L2 = a�b� [fw 2 fc; dg� jjwj = 2k; k � 0g has no regular m-approximation.Proof. Note that if R is an m-approximation of L2, then for any su�cientlylarge length n = 2k, R contains at least 2n�1 words of fc; dgn, as otherwiseApp(R;L2) � 12 .Now assume that R is regular and let q be the number of states of the minimalDFA for R. By the pumping lemma, each of the 2n�1 words of length n = 2kthat is chosen to be greater than q have a decomposition w = xyz wherew = xy2z 2 R and jxyj � q. By the pigeonhole principle, there is some lengthm, with n < m < n + q, such that R has at least 1q � 2n�1 strings in fc; dgm.Since n > q, we know that 2n+1 � 2n > q, and hence there are no strings of13

fc; dgm in L2, since m cannot be a power of 2. Thus, jR4 L2jm > 1q � 2n�1,and since there are in�nitely many lengths m with these properties, it is easyto verify that App(R;L2) will not be zero.We have shown that L2 cannot have an m-approximation.Lemma 4.5 Nonerasing morphisms and inverse nonerasing morphisms arenot x-approximability preserving, x 2 fb; t;mg.Proof. In Example 3.3 it was observed that the language L1 de�ned by (12),with � = fa; b; c; dg, has both a b-approximation and a t-approximation. Con-sider a morphism � : �� ! fa; b; cg� de�ned by the conditions �(a) = a,�(b) = b and �(c) = �(d) = c. Then �(L1) is the language B given in (13),and �(L1) does not have an m-approximation by Lemma 4.3.De�ne M = a�b� [fw 2 c� j jwj = 2k; k � 0g. It is easy to verify that Mhas a b-approximation a�b� and a t-approximation a�b� + c�. Now ��1(M) isthe language L2 in Lemma 4.4 and we know that ��1(M) does not have anm-approximation.Finally we consider the catenation and quotient operations. Catenation is notapproximability preserving and the same holds even for catenation with aregular language. Below in Lemmas 4.6 and 4.7 we use separate constructionsfor t- and b-approximations.Lemma 4.6 Let � = fa; b; c; dg and let T be the language of (6). If L =T � fc; dg�, then L has no m-approximation.Proof. First we calculate an upper bound for jLjn, n � 0. Note that for anyk � 1, T has at most k + 1 strings of length k. Any word of L of length n isa catenation of a word of T of length k and a word of fc; dg� of length n� k,0 � k � n. Hence we getjLjn � 2n + 2 � 2n�1 + 3 � 2n�2 + : : :+ (n + 1) � 20 (14)= nXi=0 n�iXj=0 2j � 2n+1 + 2n + : : :+ 21 + 20 � 2n+2For the sake of contradiction assume that there exists a regular language Rthat is an m-approximation of L and let M = (�; Q; q0; QF ; �) be a completeDFA that recognizes R. Using an argument similar to that at the beginningof the proof of Lemma 3.1, we �nd strings w1 2 T and w2 2 a�b� � T suchthat �(q0; w1) = �(q0; w2) and denote this state by q1.14

Since w1u 2 L whenever u 2 fc; dg�, it follows that there exists a bound n0such that, for all k � n0, the computations of M starting with q1 accept atleast half of the strings of fc; dgk. Note that otherwise, using (14), the rightside of (1) would be, for in�nitely many lengths n = jw1j+ k, at least12 � 2n�jw1j2n+2 (15)and hence App(R;L) could not be zero. But since, on the other hand w2u 62 Lwhenever u 2 fc; dg�, the existence of the above bound n0 implies that forlengths n = jw2j + k, where k � n0, the right side of (1) has a lower boundthat is obtained from (15) by replacing jw1j with jw2j. This is again impossible.Lemma 4.7 Let � = fa; b; c; d; e; fg and de�ne T 0 = fa; bg� � T , where T isas in (6). If we de�ne L0 = T 0 � fc; d; e; fg�, then L0 has no m-approximation.Proof. The proof is similar to that of Lemma 4.6 and we only outline theidea. Similarly as in (14) we establish that there exists a constant h > 0 suchthat for all n � 0, jL0jn � h �4n = h � jfc; d; e; fg�jn. IfM 0 is a DFA recognizingan m-approximation of L0, we �nd strings v1 2 T 0 and v2 2 fa; bg� � T 0 suchthat M 0 is in the same state q after reading v1 and v2, respectively. Againthere are two possibilities. Either computations starting from q, for in�nitelymany k, reject more than half of the strings of jfc; d; e; fgjk, or the negationof the above property holds. In both cases, as in the proof of Lemma 4.6 wesee that L(M 0) cannot be an m-approximation of L0.Corollary 4.1 Let x 2 fb; t;mg. Catenation from the right with a regularlanguage is not x-approximability preserving.Proof. Since, by Example 3.1, T as in (6) has a t-approximation, Lemma 4.6implies that catenation with a regular language is not t- or m-approximabilitypreserving. Similarly Corollary 3.1 and Lemma 4.7 give the negative result forb-approximability.The above result holds completely symmetrically if we consider catenationfrom the left with a regular language.We conjecture that Kleene-star is not approximability preserving. The staroperation is at least not x-approximation preserving, x 2 fm; b; tg which isseen easily by considering �nite languages. If L1 and L2 are �nite, App(L1; L2)is always zero but it is easy to choose �nite L1 � L2 or L1 � L2 such thatApp(L�1; L�2) > 0. 15

Lemma 4.8 Right or left quotient with respect to individual alphabet symbolsis not x-approximability preserving, x 2 fb; t;mg.Proof. Let � = fa; b; cg and L = faibic j i � 0g [fa; bg�. It is easy to verifythat fa; bg� is a b-approximation and a�b�c[fa; bg� is a t-approximation of L.We note that L=fcg does not have an m-approximation by Lemma 3.3 (andLemma 2.1). The construction for left quotient is symmetric.Above we have seen that most of the standard operations on languages are nei-ther approximation preserving nor approximability preserving. Complement isthe single exception, and the fact that complementation is m-approximationpreserving follows easily from the de�nition of the degree of approximation.We note that none of the operations considered are approximability preservingwithout being approximation preserving; perhaps it is worth asking whetherany such natural operations do exist.5 UndecidabilityIn this section we show that the question of whether a given regular languageapproximates a given context-free language is undecidable.Theorem 5.1 Let x 2 fm; b; tg. Given a context-free language L and a regu-lar language R, it is undecidable whether R is an x-approximation for L.Proof. Given an instance C = (
; (u1; :::; un); (v1; :::; vn)), n � 1,
 = fa; bg,of the Post correspondence problem (PCP) [8], construct the following context-free languages over the alphabet � =
 [fc; dg:LC;1 = fui1 � � �uikdcik � � �dci1 j 1 � ij � n; j = 1; : : : ; k; k � 1g;LC;2 = fvi1 � � � vikdcik � � �dci1 j 1 � ij � n; j = 1; : : : ; k; k � 1g:Note that the PCP instance C has a solution if and only if LC;1\LC;2 6= ;. Weobserve that although LC;1\LC;2 is not context-free in general, LC;i is context-free, i = 1; 2, and hence so is LC;1 [LC;2. Here L stands for complement withrespect to ��. Since LC;1 [LC;2 = LC;1 \ LC;2, it is clear that LC;1 [LC;2 = ��exactly when the PCP instance C has no solution.In other words, if C has no solution, then certainly �� is an x-approximation,x 2 fm; b; tg, for LC;1 [LC;2, since the two languages coincide.16

On the other hand, if C has a solution, then there exists w 2 LC;1 \ LC;2.Note that if we write w = w1w2 where w1 2 fa; bg� and w2 2 fc; dg�, from thestructure of the language LC;1 \ LC;2 it follows that wi1wi2 2 LC;1 \LC;2 for alli � 1. Thus always when n = i � jwj, i � 1, j�� � (LC;1 [LC;2)jn � 1. We getApp(��; LC;1[LC;2) � lim supi!1 j�� � (LC;1 [LC;2)ji�jwjmin1(jLC;1 [LC;2)ji�jwj; j�� � (LC;1 [LC;2)ji�jwj)and here the right side is at least one. It follows that the degree of approxi-mation has to be at least one.6 ConclusionHere we have continued the work of [7,9,10] in attempting to classify di�erenttypes of regular approximations for non-regular languages. Naturally muchmore remains to be done in relating these results to previous work. In partic-ular, it would be interesting to explore possible connections with the roughset approximations studied in [12,13].Our results leave open the question whether there exists a (context-free) lan-guage L such that L does not have any m-approximation but L has an m-approximation in the limit. We have shown that for b-approximations andt-approximations such examples do exist.We have shown that it is undecidable whether a given regular language isan x-approximation, x 2 fm; b; tg, for a given context-free language. It re-mains an open question whether for a given context-free language L we candecide whether or not L has some x-approximation. Note that at �rst sightthe undecidability of this question could seem to follow from Greibach's theo-rem [8]. However, the result is not applicable because the class of context-freelanguages that have x-approximations is not preserved under quotient withsingle alphabet symbols, as observed in Lemma 4.8.References[1] C. Calude, K. Salomaa and S. Yu, Additive distances and quasi-distancesbetween words. J. Universal Computer Science 8 (2002) 141{152.[2] C. Câmpeanu and A. P�aun, Tight bounds for the state complexity ofdeterministic cover automata. In: H. Leung and G. Pighizzini (Eds.),Descriptional Complexity of Formal Systems, DCFS 2006, Las Cruces, NM,June 21{23, 2006, pp. 223{231 17

[3] C. Câmpeanu, N. Sântean and S. Yu, Minimal cover automata for �nitelanguages. Theoret. Comput. Sci. 267 (2001) 3{16.[4] B. Cordy and K. Salomaa, Regular approximations of non-regular languages.In: H. Leung and G. Pighizzini (Eds.), Descriptional Complexity of FormalSystems, DCFS 2006, Las Cruces, NM, June 21{23, 2006, pp. 118{129.[5] C. Cortes, M. Mohri, A. Rastogi and M. Riley, E�cient computation of therelative entropy of probabilistic automata. 7th Latin American Symposium,LATIN 2006, Lect. Notes Comput. Sci. 3887, Springer, 2006, pp. 323{336.[6] M. Domaratzki, J. Shallit and S. Yu, Minimal covers of formal languages.Developments in Language Theory, DLT 2001, Lect. Notes Comput. Sci. 2295,Springer, 2001, pp. 319{329.[7] G. Eisman and B. Ravikumar, Approximate recognition of non-regularlanguages by �nite automata. Australasian Computer Science Conference,ASCS 2005, pp. 219{228.[8] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages,and Computation. Addison-Wesley Publishing Company, 1979.[9] M. Kappes and C. Kintala, Tradeo�s between reliability and conciness ofdeterministic �nite automata. J. Automata, Languages and Combinatorics 9(2004) 281{292.[10] M. Kappes and F. Niessner, Succinct representations of DFA with di�erentlevels of reliability. Theoret. Comput. Sci. 330 (2005) 299{310.[11] M.-J. Nederhof, Practical experiments with regular approximation of context-free languages. Computational Linguistics 26 (2000) 17{44.[12] Gh. P�aun, L. Polkowski and A. Skowron, Rough-set-like approximations ofcontext-free and regular languages. Proceedings of IPMU{96: InformationProcessing and Management of Uncertainty on Knowledge Based Systems, July1{5, 1996, Granada, Spain, Universidad de Granada, vol. II, pp. 891{895.[13] Gh. P�aun, L. Polkowski and A. Skowron, Rough set approximations oflanguages. Fundamenta Informaticae 32 (1997) 149{162.[14] J. Shallit and Y. Breitbart, Automaticity I: Properties of a measure ofdescriptional complexity. J. Comput. System Sci. 53 (1996) 10{25.[15] S. Yu, Regular languages. In: G. Rozenberg and A. Salomaa (Eds.), Handbookof Formal Languages, Vol. I, Springer, 1997, pp. 41{110.
18

