On the Existence of Regular Approximations'

Brendan Cordy? Kai Salomaa®

aDepartment of Mathematics and Statistics, McGill University,
805 Sherbrooke W., Montreal, Quebec H3A 2K6, Canada

bSchool of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Abstract

We approximate context-free, or more general, languages using finite automata. The
degree of approximation is measured, roughly speaking, by counting the number of
incorrect answers an automaton gives on inputs of length m and observing how these
values behave for large m. More restrictive variants are obtained by requiring that
the automaton never accepts words outside the language or that it accepts all words
in the language. A further distinction is whether a given (context-free) language
has a regular approximation which is optimal under the measure of approximation
degree or an approximation which is arbitrarily close to optimal. We study closure
and decision properties of the approximation measure.

Key words: regular languages, degree of approximation, decidability

1 Introduction

Different ways of measuring levels of reliability of finite automata have been
considered in [9,10]. By allowing a finite automaton to give incorrect answers
on some inputs we may obtain significant savings in the state-complexity
of a language. Here, instead of comparing state-complexity of representa-
tions with different reliability, we consider various ways to give approximate
representations of non-regular languages using finite automata. Strong non-
approximability results for certain non-regular languages have been previously
obtained in [7].

Email addresses: bcordy@math.mcgill.ca (Brendan Cordy),
ksalomaa@cs.queensu.ca (Kai Salomaa).
LA preliminary version of this paper appeared in DCFS 2006 [4].

Preprint submitted to Elsevier 26 March 2007

For the purpose of evaluating how well a language is approximated by another
language, we need a way to measure the similarity of two languages. The exis-
tence of “good” approximations for non-regular languages naturally depends
very much on the measures used to compare languages. We present examples
for different types of measurements where good regular approximations ex-
ist or do not exist, respectively. We use variants of the measures considered
in [7,9,10]. The measures, roughly speaking, count the number of inputs of
a given length for which a finite automaton gives an incorrect answer, and
then see how this value behaves for long inputs in the limit. We make some
modifications to the earlier definitions, mainly, in order to avoid trivial good
approximations. This issue did not occur in [7,9,10], perhaps, because the work
there was concerned on the one hand with negative approximability results,
that is results about the non-existence of approximations, and on the other
hand with worst-case results for the descriptional complexity of approxima-
tions having different reliability. Thus, the work in [7,9,10] was for the most
part not dealing with positive results on the existence of approximations.

We distinguish approximations of a language L by requiring that the approxi-
mation has to contain all strings in L (top approximation); the approximation
must be included in L (bottom approximation); or by imposing no restriction
(mixed approximation). A further distinction is whether L has an approx-
imation that is optimal under the approximation degree or approximations
that can become arbitrarily close to optimal (an approximation in the limit).
We study closure properties of the different variants of approximability and
establish an undecidability result.

Other types of regular approximations of languages have been considered e.g.
in [1-3,5,6,12-14]. The automaticity descriptional complexity measure [14]
and the model of cover automata [3] count the number of states of finite
automata that recognize approximations of the language to be represented.
Automaticity is a descriptional complexity measure for arbitrary languages
whereas cover automata are used as an implementing method to reduce the
size of automata that represent finite languages. These models differ from our
approach in that the approximations are required to be correct for all words
up to length n (with variable n) and do not consider the number of incorrect
answers on words longer than n. The paper [6] investigates minimal covers
and the approach is quite different from the measures considered here, as
well. The paper [1] considers metrics that are required to have an additivity
property with respect to catenation. This property guarantees that the metric
preserves regularity of languages which means it would not be useful for our
current purpose. In the context of probabilistic languages, it is common to use
the relative entropy as a distance measure between languages [5]. Work along
more practical lines on regular approximations of context-free languages can
be found in [11].

The work [12,13] investigates lower and upper rough set approximations that
converge to a given language L. Interestingly, it turns out that in most cases
the lower and upper approximations of context-free languages are regular. It
would be a useful topic for further research to determine how the rough set
approximations relate to the measures we consider here.

2 Degree of approximation

In the following 3 denotes a finite alphabet and ¥* is the set of all finite strings
over Y. The length of a string w is the number of occurrences of symbols of
¥ in w and it is denoted |w|. The reversal (or mirror-image) of w € ¥* is
denoted w®. For L C ¥* and m > 0, we denote by |L|,, the number of strings
of length m in L. An alphabet is said to be minimal for a language L C ¥* if
each symbol of ¥ occurs in some string of L. The symmetric difference of sets
A and B is A A B. The cardinality of a finite set is |A].

A deterministic finite automaton (DFA) is a tuple M = (X, @, qo, Qr, J) where
Y is the input alphabet, () is the finite set of states, ¢y € (@ is the start
state, Qr C @ is the set of accepting states, and ¢ : Q x ¥ — (@ is the
state transition function. The function § is extended in the natural way to
a function) x ¥* — @ and the language recognized by the DFA M is
L(M) = {w € ¥* | §(qo,w) € Qr}. Note that a DFA as defined above
is complete, i.e., §(q,0) is defined for all ¢ € @, 0 € ¥. The deterministic
finite automata recognize exactly all the regular languages. For all unexplained
notions in language theory we refer the reader e.g. to [8,15].

For integers m,n > 0, we define the “non-zero minimum” of m and n as
ming (m, n) = max(min(m,n), 1).

When a finite automaton A is used as an approximation of a language L, the
value | L(A) A L |, gives the number of strings of length m for which A gives
an incorrect answer. More generally, if R and L are two languages over ¥, we
define the degree of approximation of L by R as the quantity

. |RAL |,
A R, L)=1 :
ppx(R, L) msap ming (| L [n, | 2* — L |,) a

When the alphabet ¥ is known from the context we denote the approximation
degree simply as App(R, L). It can be noted that the degree-of-approximation
relation is not symmetric. In our terminology, a degree-of-approximation value
(close to) zero means a “good approximation”. The definition of App(R, L)
does not require that R is regular, however, in the following we are mainly
concerned with cases where the language used as an approximation is regular.

The relation (1) resembles the reliability measure of [10] or the approximation
measure used in [7]. These measures use the number of all words of length
n, | £* |, (or equivalently | ¥ |™), as the denominator. The main reason for
‘ \RZA*M” as the
right side of (1), all very “dense” languages would always have ¥* as a good
approximation and, similarly, all “sparse” languages could be approximated
by 0. Above by a dense (respectively, sparse) language we mean a language
L such that the limit of | ¥* — L |, (respectively, | L |,) divided by |X|"

approaches zero when n approaches infinity.

introducing the definition (1) is that if we would use lim sup,, , .,

In fact, the degree of approximation can be thought of as a measure of how well
some language R approximates L relative to the best trivial approximation
(0 or X*). If we were to use the maximum of | L |, and | ¥* — L |, in the
denominator in place of the minimum, this could be viewed as comparing an
approximation relative to the worse of the two trivial approximations.

In (1) we use the non-zero minimum in the denominator because it is possible
that min(| L |,,| ¥* — L |,) is zero. In particular, if L contains no words of
length n (or all words of length n) where n ranges over infinitely many non-
periodic values, this could cause the approximation degree to become infinite
for any regular language. This could happen even if L is very sparse, in which
case () would intuitively be a “reasonably good” approximation of L.

First we consider the question of what values the approximation degree can
have. The below example gives a construction showing that App(R, L) with
R regular and L context-free can have any rational value between 0 and 1.

Example 2.1 Let ¥ = {0,1,b,c¢}. For any integers 0 < z < n we con-
struct a regular language R and a context-free language L over X such that
App(R, L) = 2.

Let f:{1,...,n} — {0,1}" be a bijective mapping where r = [logn]. We
define .
L= f@c|j#k jk>0}
i=1

All strings in L begin with a sequence of r symbols 0 and 1, followed by a
string of b’s and ¢’s. Let 0 < k < n and define

k

i=1

Let u =1r+42m, m > 1. All strings of L having length u begin with a sequence
of r symbols 0 and 1, and followed by a string of ¢« symbols b and j symbols ¢
where i + j = 2m and ¢ # j. Thus,

Ll =n-(2m). (2)

The set | Ry A L |, has all strings of L of length u beginning with f(i),
k < i <n,and for any 1 <i < k it contains one string f(i)b/c’, where j = m.
Thus,

Ry AL |, =(n—k)-(2m) + k. (3)
Next let v = r+2m —1, m > 1. Strings of L having length v again begin with

a sequence of r symbols 0 and 1, followed by all strings in b*c* having length
2m — 1. Thus,

Ll =n-(2m). (4)

Also, similarly as above it is easy to see that

| By AL, = (n—k)-(2m). (5)

Always when ¢ > r, | L |; < | ¥* |;. Hence using (2), (3), (4), and (5), we see

that the (r + 2m)™ term in the limit on the right side of (1) is W and

the (r 4+ 2m — 1)th term is % Thus as the limit we obtain
n—=k

Since k can be an arbitrary integer between 0 and n, the claim follows. ™

Similar to Example 2.1 we can, of course, construct languages R and L such
that App(R, L) is any rational number greater than one. This can be done
by making R A L sufficiently large, and this would correspond to situations
where R is a bad approximation of L.

Next we define what we mean by “good” regular approximations of a lan-
guage L. We distinguish the notions of top approzimation that contains L,
bottom approrimation that is contained in L and mized approzimation (or
just approximation) that can have any relation with L.

Definition 2.1 Let L. C ¥*. The language L has a regular m-approximation
(mized approxzimation) if there exists a reqular language R such that App(R, L) =
0. We say that L has a regular t-approximation, or top approximation, (respec-
tively, b-approximation, or bottom approzimation) if above R can be chosen
such that L C R (respectively, R C L).

The language L is said to have a regular m-approximation in the limit if for
any € > 0 there exists a reqular language R, such that App(R., L) < €. Again
we say that L has a regular t-approximation (respectively, b-approximation)

in the limit if above R, can always be chosen such that L C R, (respectively,
R.CL).

In the following, we call regular z-approximations simply z-approximations,
where © € {m,b,t}. Note that any t-approximation or b-approximation is by
definition also an m-approximation.

We observe that it is possible that L C ¥* does not have an x-approximation
when viewed as a language over Y, but L has an xz-approximation over some
larger alphabet. For example, choose ¥ = {a,b} and

Ly =% —{a"™b" | n > 0}.

Now for all n > 1, min;(|L;|,, |¥* — L1|,,) = 1, and for any regular language
R the value of Apps,(R, L) cannot be zero. On the other hand, consider L; to
be a language over the alphabet Q = {a,b,c} and choose Ry = {a,b}*. Now
for large values of n, |Lq|, < |Q2* — L1|, and hence Appq(R;, L1) = 0.

The above situation is caused by the fact that |L;|,, n > 0, is close to |X*|,
where ¥ is the alphabet containing all symbols occuring in words of L;.

Lemma 2.1 Let I. C ¥* where X is the minimal alphabet for L and x €
{m,b,t}. If there is a constant ng such that |L|,, < $|S*|, for alln > ngy, then
L has an x-approximation when viewed as a language over ¥ if and only if L
has an x-approximation when viewed as a language over any extension of X.

Proof. When n > ng, the term in the denominator of (1) will be |L|, (or 1),
and this holds independently of whether L is viewed as a language over X or
over some extension of . ®

Lemma 2.1 means, roughly speaking, that extending the alphabet does not
affect the existence of approximations, so long as the language in question
contains at most half of the words of any given length in the original alpha-
bet. In the following sections we often implicitly rely on Lemma 2.1 in our
constructions.

To conclude this section we recall a result from [7]. Denote
Lynajority = {w € {a,b}" | w has more a’s than b’s }.
In [7] it is shown that for any regular language R C X%,

hm ‘ R A Lmajority |n _ 1

Using our definitions, this gives the following corollary. Note that the property
of having an m-approximation in the limit defines the largest class of languages
among the different properties considered in Definition 2.1.

Corollary 2.1 [7] The language Ly ority does not have an m-approximation
i the limait.

3 Different types of approximations

We show that the classes of languages having different types of approximations
as introduced in Definition 2.1 are distinct. First we show that there exist
languages having top approximations but no bottom approximations and vice
versa. We consider the linear context-free language

T={a'V |i,j>0,i#j} (6)

Example 3.1 We show that R; = a*b* is a t-approximation of 7. We note
that 7 C R, and | Ry AT |, n > 0, is always 0 or 1. The number of strings
in 7" of length m is either m or m + 1 and clearly | T' |,,, < | ¥* = T |,,, for all
m > 2. Thus

1
App(R;, T) = lim sup < limsup — = 0.

m—00 | ‘m m—oc 11

Lemma 3.1 The language T from (6) has no b-approzimation.

Proof. Let R, be any regular language such that R, C T'. It is sufficient to
show that App(R,, T) > 0.

Let ¥ = {a,b} and M = (%,Q, gy, Qr,9) be a complete DFA that recognizes
Ry. Consider computations of M on strings in a¢* and find the first state that
repeats. That is, we find 0 <4 < |Q| and 0 < j < |Q| such that §(qo,a’) = p
and §(p1,a’) = p;. Since M is complete, the state p; always exists.

Now we consider computations of M starting from state p; on strings in b*
and find the first cycle. We find 0 < k£ < |@Q| and 0 < m < |@Q] such that

§(p1, bF) = py and (po, B™) = py.

We choose an integer r as follows. If k¥ <4, then r =14 — k. If £ > 4, then we
choose r to be the smallest integer such that

j divides k —i+r. (7)

The integer r can always be found such that r < |@|. Now there exists p3 € Q)
such that for all z,y > 0, we have

5((]0, ai+:ﬂjbk+ym+r) = ps. (8)

By (7), we can choose = such that i + x5 = k + r + 0 - m. Thus if p; is an
accepting state, R, = L(M) contains some string not in 7" and R, is not a
b-approximation. Hence p3 cannot be an accepting state and from (8) we know
that R, does not contain any strings of the form a'T*/p*+¥"+" where x,y > 0.

Let z be an arbitrary positive integer and denote
n=i+k+r+z-j7-m.

We know that 7" contains, in total, n or n + 1 strings of length n. By (8) we
know that the following strings of length n cannot be in Ry:

azbk—|—r—|—2]m7 aH—]mbk—H"—l—(zfl)]m az—|—zgmbk—|—r7

, ey

and it follows that | R, AT |, > z+ 1. Since for large n, | T |, < | Z* =T |,
we get

, |RyAT |, _ |RyAT |,
A T)=1 — 2> —_—
ppf D)= g R
1
> lim sup - et =—>0.

200 t+k+r+2-7-m+1 jm

The above proof shows that the value of App(R,, T) is positive, but does not
give any positive lower bound for it. Indeed it is easy to see that the language
T has a b-approximation in the limit. If a DFA M, checks that the input
is of the form a't’ where i Z j modulo some of the integers 2,...,k, then
L(My) C T and for large enough k, App(L(My,),T) becomes smaller than any
given positive constant.

Above we have seen that the language T has a t-approximation but no b-
approximation. This naturally begs the question whether there exists a lan-
guage with a b-approximation but no t-approximation. The following corre-
spondence between b- and t-approximations turns out to be useful.

Proposition 3.1 Let L be a language over the alphabet 3.

(i) If L has a t-approzimation, then ¥* — L has a b-approzimation.
(ii) If L has a b-approzimation, then X* — L has a t-approzimation.

Proof. Assume that R; is a regular language such that L C R, and App(R;, L) =
0. We observe that (X* — L) A (X* — Ry)) = L A Ry = R, — L. Thus,

oy LE R A (S D) |,
App(S* — R, Y — L) =1
pp(X7 = B B0 = D) =limsup S o T T)

lims (Bt DL |
= 11m su
mosoe. 1iny (| L |y | 2 — L |m)

= App(R;, L) = 0.

This proves (i) since ¥* — R, C ¥* — L and ¥* — R, is regular. The case (ii)
is completely symmetric. ®

Now Example 3.1, Lemma 3.1 and Proposition 3.1 give the following.

Corollary 3.1 With T as in (6), the language ¥* — T has a b-approzimation
but no t-approrimation.

Next we address the question of whether there exist languages having an
m-approximation but no b- or t-approximations. In the following let ¥ =
{a,b,¢,d} and denote

X ={db |i>0}u{cd |i#j, i,j>0} (9)

Example 3.2 The language ¢*d* is an m-approximation of X. To see this we
observe that for any even length 2n, ¢*d* contains all strings of X except a™b”,
and for any odd length 2n + 1, ¢*d* contains all strings of X. Similarly, for
any even length 2n, ¢*d* contains the string ¢"d" not in X and for any odd
length 2n + 1, all strings of length 2n 4+ 1 in ¢*d* are also in X. Since for all
non-negative integers n, | X [, =n+ 1, we get

2
App(c*d*, X) < lim su =0
Lemma 3.2 The language X as in (9) does not have a b-approzimation or a
t-approximation.

Proof. First we show that X does not have a b-approximation. Let R, be
any regular language such that R, C X and let M be a complete DFA having
q states, that recognizes I,. Exactly as in the proof of Lemma 3.1 we can find
integers i, j, k, m,r < ¢, where j divides (k — i + r) such that M reaches the
same state p after reading any string ¢'*%d*+¥"+" independently of the values
x,y > 0, and it is then observed that p cannot be an accepting state. Then
similarly as in the proof of Lemma 3.1 we can calculate that App(R,, X) is at
least]Lm The only difference in the estimation is that now, for any length n,
X contains exactly n 4 1 strings of length n, and the value n 4+ 1 was used in
the estimation for the lower bound in the proof of Lemma 3.1.

Next we show that the language X cannot have a t-approximation. Assume
that R, is a regular language, X C R, and let M = (X,Q, qy, Qr,9) be a
complete DFA recognizing R;. We consider computations of M on strings of
a* and find the first cycle. That is, we find 0 < i < |Q], 1 < m < |Q] such
that for some p; € Q, 6(go,a’) = p; and §(p1,a™) = py.

Then we consider computations of M starting in state p; on strings in b* and
find the first cycle. That is, we find 0 < j < |@Q| and 1 < n < |@] such that
for some py € Q, d(p1,) = py and 6(py, b") = py.

Thus for all ,y > 0, 6(qo, a*T*™p"+9") = p,. For large values of z, i +am > j.
Since X C L(M) and X contains all strings a"b", r > 0, this implies that
an accepting state must be reachable from p, by reading a string of b’s. Thus
there exists k < |@Q| and ps € Qp such that for all z,y > 0,

6(q0, ai+xmbj+k+yn) = ps. (10)

Let z be a positive integer and denote
By (10) we know that M must accept the following strings of length n,,

azb]-l—k—l—zmn7 aH—mnbj-l—k—l—(zfl)mn az-l—zmnb]—l—k.

, ey

At most one of the above z + 1 strings can be in X and hence we conclude
that for any integer n,, | L(M) A X |,. > z. Now we get

Nz E*_X nz)
z 1

> lim su =—>0.
- z—>oop1+i—|—j+k+zmn mn

R NX
App(Ry, X) > lim sup Rl

2Z2—00 minl(\ X

For easier readability, the language X used in Example 3.2 and Lemma 3.2 is
defined over a four letter alphabet. By using a simple coding, exactly the same
argument can be used to show that there is a language over a binary alphabet
having an m-approximation but no b-approximation or t-approximation.

Next we show that there exist context-free languages that do not have m-
approximations, or even m-approximations in the limit. A convenient language
for this purpose is

Lo = {a"b* | k > 0}. (11)

10

Lemma 3.3 Let Y = {a,b}. The language Ly does not have an m-approzimation
in the limat.

Proof. Observe for all n > 1, min, (| Ly |, | £* — Ly |,) = 1, and we have for
any language R,

RA Ly,
App(R, Ly) = lim sup | 0 =limsup | RA Lg |,.

n—00 min1(| Ly ‘n’ | ¥* — Ly |n) n—0o0

Clearly then, App(R, Ly) < 1 if and only if there is a positive integer ng such
that | R A Ly |, = 0 for all n > ng. But this means that R and Ly differ only
on finitely many strings, and therefore R must be non-regular. =

It can be argued that L, has no m-approximations (in the limit) because of
the fact that Ly has at most one string of any length, and this is of course what
makes the proof quite easy. We have established the following result in [4].

Lemma 3.4 [4] Let Ly = {w$w® | w € {a,b}*}. The language L{, does not
have an m-approximation in the limat.

The proof of Lemma 3.4 uses a density based argument. The language Lj
has, roughly, 22 words of length n which makes a density argument straight-
forward to use. The proof required to show that L, orisy does not have an
m-approximation in the limit is considerably more involved, see [7].

Combining the results of Lemmas 3.1, 3.2 and 3.3, Corollary 3.1 and Exam-
ples 3.1 and 3.2 we can summarize the situation as follows.

Theorem 3.1 There exist context-free languages Ly, Ly, L,, and Ly such that

(i) Ly has a t-approzimation but no b-approximation.

(ii) Ly has a b-approzimation but no t-approrimation.

(iii) L, has an m-approzimation but no b-approrimation or t-approximation.

(iv) Lo does not have any m-approzimation, and not even an m-approximation
wn the limat.

Since t- and b-approximations are always also m-approximations, Theorem 3.1
says, in particular, that for any combination of z,y € {t,b, m} such that x # y
and z-approximations are not a special case of y-approximations, there exists
a context-free language L such that L has an x-approximation and L does not
have an y-approximation.

In Lemma 3.1 we saw that the language 7' from (6) does not have a b-
approximation, and after this result it was observed that 7", on the other hand,
has a b-approximation in the limit. Using the correspondence between b- and t-
approximations as in Proposition 3.1 it follows that there exist languages that

11

do not have a t-approximation but do have a t-approximation in the limit.
Theorem 3.1 (iv) leaves open the question whether there exist languages hav-
ing an m-approximation in the limit and do not have an m-approximation.
When using a density argument, as in the proof of Lemma 3.4, to establish
the non-existence of an m-approximation, it is not clear whether the same
languages can have an m-approximation in the limit, and this is clearly the
case also for the language Ly from Lemma 3.3.

When considering the types of approximations introduced in Definition 2.1,
a language has the strongest approximation properties when it has both a ¢-
approximation and a b-approximation. The obvious question is then whether
non-regular languages can have both ¢- and b-approximations. This is answered
affirmatively by the following example.

Example 3.3 Let ¥ = {a,b,¢,d} and

Ly={ad'b"|i>0}U{cd}* (12)

Denote Ly = {¢,d}* and L3z = a*b* U {c,d}*. Clearly Ly, C Ly C L. It is easy
to verify that I, is a b-approximation and L3 is a t-approximation of L;.

Corollary 3.2 There exist non-reqular context-free languages that have both
a t-approrimation and a b-approximation.

4 Closure properties

Let x € {b,t,m}. If R; is an z-approximation of L;, 1 < i < n, it is natural
to ask whether o(Ry, ..., R,) is an z-approximation for o(Ly, ..., L,) when o
is some n-ary operation on languages. If o has this property we say that o is
x-approximation preserving. More generally we say that o is z-approximability
preserving, if o(Ly,...,L,) has an z-approximation whenever the languages
L;,i1=1,...,n, each have an z-approximation. An approximation preserving
operation is always approximability preserving but not vice versa.

Lemma 4.1 Complementation is m-approximation preserving. Complemen-
tation s not b-approximability preserving or t-approrimability preserving.

Proof. Similarly as in the proof of Proposition 3.1 it can be computed that if
R is an m-approximation of L then ¥* — R is an m-approximation of ¥* — L.

Complementation is not b-approximability or t-approximability preserving by
Lemma 3.1 and Corollary 3.1. =

12

Lemma 4.2 Intersection and union are not z-approximability preserving for
x € {m,b,t}.

Proof. Let ¥ = {a,b,c,d,e, f} and let Ly be as in (11). Define L, = {¢,d}*U
Ly and Ly = {e, f}* U Ly. Let Ry = {c,d}* Ua*b* and Ry = {e, f}* U a*b*.
Then R; is a t-approximation of L;, : = 1,2, and, by Lemma 3.3, L1 N Ly = L
does not have an m-approximation (and hence no t-approximation). Note that
we have extended the alphabet but, by Lemma 2.1, the language Ly has no
m~approximation even with respect to the extended alphabet.

For the case of b-approximability we can choose R} = {¢,d}* and R, = {e, f}*
and we note that R} is a b-approximation of L;, i = 1,2.

Next we consider union. As in Lemma 4.1 and Proposition 3.1 we observe
that R is an z-approximation of L C X* if and only if ¥* — R is an y-
approximation of ¥* — L where {z,y} = {b,t}. Since intersection can be
expressed in terms of union and complement, from the fact that intersection is
not z-approximability preserving it follows that union is not y-approximability

preserving, {z,y} = {b,t}. ™

Next we consider closure under morphisms and inverse morphisms. We need
two lemmas. The proof of the first lemma is basically the same as the proof
of Lemma 3.3 — observe that B has at most two strings of any given length.

Lemma 4.3 Let X = {a,b,c}. The language

B={d"V | k>0}uc". (13)

has no m-approximation.

Lemma 4.4 Let ¥ = {a,b,c,d}. The language Ly, = a*b* U {w € {c¢,d}* |
lw| = 2%,k > 0} has no regular m-approzimation.

Proof. Note that if R is an m-approximation of Ls, then for any sufficiently
large length n = 2%, R contains at least 2" ! words of {c,d}", as otherwise

Now assume that R is regular and let ¢ be the number of states of the minimal
DFA for R. By the pumping lemma, each of the 2"~! words of length n = 2F
that is chosen to be greater than ¢ have a decomposition w = xyz where
w = xy*z € R and |zy| < ¢. By the pigeonhole principle, there is some length
m, with n < m < n + ¢, such that R has at least % 2"~ strings in {c, d}™.
Since n > ¢, we know that 2"*! — 2" > ¢, and hence there are no strings of

13

{¢,d}™ in Ly, since m cannot be a power of 2. Thus, |R A Ly, > % Sont

and since there are infinitely many lengths m with these properties, it is easy
to verify that App(R, Ly) will not be zero.

We have shown that Ly cannot have an m-approximation. M

Lemma 4.5 Nonerasing morphisms and inverse monerasing morphisms are
not z-approzimability preserving, x € {b,t,m}.

Proof. In Example 3.3 it was observed that the language L; defined by (12),
with ¥ = {a, b, ¢, d}, has both a b-approximation and a t-approximation. Con-
sider a morphism ¢ : ¥* — {a,b,c}* defined by the conditions ¢(a) = a,
#(b) = b and ¢(c) = ¢(d) = c¢. Then ¢(L,) is the language B given in (13),
and ¢(L1) does not have an m-approximation by Lemma 4.3.

Define M = a*b* U{w € ¢* | |w| = 2%,k > 0}. It is easy to verify that M
has a b-approximation a*b* and a t-approximation a*b* + ¢*. Now ¢ (M) is
the language Ly in Lemma 4.4 and we know that ¢ '(M) does not have an
m-approximation. H

Finally we consider the catenation and quotient operations. Catenation is not
approximability preserving and the same holds even for catenation with a
regular language. Below in Lemmas 4.6 and 4.7 we use separate constructions
for t- and b-approximations.

Lemma 4.6 Let ¥ = {a,b,c,d} and let T be the language of (6). If L =
T -{c,d}*, then L has no m-approzimation.

Proof. First we calculate an upper bound for |L|,, n > 0. Note that for any
k > 1, T has at most k + 1 strings of length k. Any word of L of length n is
a catenation of a word of T of length k& and a word of {¢, d}* of length n — k,
0 <k < n. Hence we get

L, < 2"42-2"143.2" 24 4+ (n+1)-2° (14)
= Y)2 < amthpn g 42t 420 <P
i=0 j=0

For the sake of contradiction assume that there exists a regular language R
that is an m-approximation of L and let M = (¥, Q, qo, Qr,) be a complete
DFA that recognizes R. Using an argument similar to that at the beginning
of the proof of Lemma 3.1, we find strings w; € T and wy € a*b* — T such
that 0(qo, w;) = d(qo, w2) and denote this state by ¢;.

14

Since wyu € L whenever u € {¢,d}*, it follows that there exists a bound ng
such that, for all & > ng, the computations of M starting with ¢; accept at
least half of the strings of {c, d}*. Note that otherwise, using (14), the right
side of (1) would be, for infinitely many lengths n = |w,| + k, at least

1 on—|w]
32" "

e (15)

and hence App(R, L) could not be zero. But since, on the other hand wou ¢ L
whenever u € {c,d}*, the existence of the above bound ng implies that for
lengths n = |wy| + k, where k > ng, the right side of (1) has a lower bound
that is obtained from (15) by replacing |w; | with |ws|. This is again impossible.
n

Lemma 4.7 Let ¥ = {a,b,c,d,e, f} and define T' = {a,b}* — T, where T is
as in (6). If we define L' =T"-{c,d, e, f}*, then L' has no m-approzimation.

Proof. The proof is similar to that of Lemma 4.6 and we only outline the
idea. Similarly as in (14) we establish that there exists a constant A > 0 such
that for allm > 0, |L'|,, < h-4" = h-|{c,d, e, f}*|n. If M"is a DFA recognizing
an m-approximation of L', we find strings v; € T" and vy € {a,b}* — T" such
that M' is in the same state ¢ after reading v, and vy, respectively. Again
there are two possibilities. Either computations starting from ¢, for infinitely
many k, reject more than half of the strings of |{c,d, e, f}|x, or the negation
of the above property holds. In both cases, as in the proof of Lemma 4.6 we
see that L(M') cannot be an m-approximation of L'. ®

Corollary 4.1 Let x € {b,t,m}. Catenation from the right with a regular
language is not x-approzimability preserving.

Proof. Since, by Example 3.1, T as in (6) has a t-approximation, Lemma 4.6
implies that catenation with a regular language is not ¢- or m-approximability
preserving. Similarly Corollary 3.1 and Lemma 4.7 give the negative result for
b-approximability. ®

The above result holds completely symmetrically if we consider catenation
from the left with a regular language.

We conjecture that Kleene-star is not approximability preserving. The star
operation is at least not z-approximation preserving, x € {m,b,t} which is
seen easily by considering finite languages. If L; and L are finite, App(L1, Ls)
is always zero but it is easy to choose finite L.y C Ly or Ly D Ly such that
App(L;, L3) > 0.

15

Lemma 4.8 Right or left quotient with respect to individual alphabet symbols
is not x-approzimability preserving, x € {b,t,m}.

Proof. Let ¥ = {a,b,c} and L = {a’b'c | i > 0} U {a, b}*. It is easy to verify
that {a, b}* is a b-approximation and a*b*cU{a, b}* is a t-approximation of L.
We note that L/{c} does not have an m-approximation by Lemma 3.3 (and
Lemma 2.1). The construction for left quotient is symmetric. ™

Above we have seen that most of the standard operations on languages are nei-
ther approximation preserving nor approximability preserving. Complement is
the single exception, and the fact that complementation is m-approximation
preserving follows easily from the definition of the degree of approximation.
We note that none of the operations considered are approximability preserving
without being approximation preserving; perhaps it is worth asking whether
any such natural operations do exist.

5 Undecidability

In this section we show that the question of whether a given regular language
approximates a given context-free language is undecidable.

Theorem 5.1 Let x € {m,b,t}. Given a context-free language L and a requ-
lar language R, it is undecidable whether R is an x-approximation for L.

Proof. Given an instance C' = (Q, (uy, ..., uy), (v1, ..., v,)), n > 1, Q = {a, b},
of the Post correspondence problem (PCP) [8], construct the following context-
free languages over the alphabet ¥ = QU {¢, d}:

Leg = {ug, - ugde* - -dc [1<i;<m, j=1,....k k>1},
Leg = {vy, - v dc™ - -de" |1 <i;<mn, j=1,....k k>1}.

Note that the PCP instance C has a solution if and only if Loy N Ley # 0. We
observe that although L¢ M Le o is not context-free in general, L¢; is context-
free, 7 = 1,2, and hence so is Ly U Log. Here L stands for complement with
respect to ¥*. Since Loy ULy = Loy N Loy, it is clear that Loy U Ly = XF
exactly when the PCP instance C' has no solution.

In other words, if C' has no solution, then certainly ¥* is an z-approximation,
x € {m,b,t}, for Ly U L¢ o, since the two languages coincide.

16

On the other hand, if C' has a solution, then there exists w € L¢i N L.
Note that if we write w = wyws where wy € {a,b}* and wy € {¢,d}*, from the
structure of the language L1 N Le it follows that wiwl € Lei N Loy for all
i > 1. Thus always when n =i |w|, i > 1, |[¥* — (Lo U Leg) |, > 1. We get

B Y* (Lo UL ilw
App(X*, L ULc,) > limsup ————— 2 (LeaUloo)liw
isoo miny (|Ley U L) i)y 2% — (Lep U Leg) lijw|)

and here the right side is at least one. It follows that the degree of approxi-
mation has to be at least one. ®

6 Conclusion

Here we have continued the work of [7,9,10] in attempting to classify different
types of regular approximations for non-regular languages. Naturally much
more remains to be done in relating these results to previous work. In partic-
ular, it would be interesting to explore possible connections with the rough
set approximations studied in [12,13].

Our results leave open the question whether there exists a (context-free) lan-
guage L such that L does not have any m-approximation but L has an m-
approximation in the limit. We have shown that for b-approximations and
t-approximations such examples do exist.

We have shown that it is undecidable whether a given regular language is
an z-approximation, x € {m,b,t}, for a given context-free language. It re-
mains an open question whether for a given context-free language L we can
decide whether or not L has some z-approximation. Note that at first sight
the undecidability of this question could seem to follow from Greibach’s theo-
rem [8]. However, the result is not applicable because the class of context-free
languages that have z-approximations is not preserved under quotient with
single alphabet symbols, as observed in Lemma 4.8.

References

[1] C. Calude, K. Salomaa and S. Yu, Additive distances and quasi-distances
between words. J. Universal Computer Science 8 (2002) 141-152.

[2] C. Campeanu and A. Paun, Tight bounds for the state complexity of
deterministic cover automata. In: H. Leung and G. Pighizzini (Eds.),
Descriptional Complexity of Formal Systems, DCFS 2006, Las Cruces, NM,
June 21 23, 2006, pp. 223 231

17

[3] C. Campeanu, N. Santean and S. Yu, Minimal cover automata for finite
languages. Theoret. Comput. Sci. 267 (2001) 3 16.

[4] B. Cordy and K. Salomaa, Regular approximations of non-regular languages.
In: H. Leung and G. Pighizzini (Eds.), Descriptional Complexity of Formal
Systems, DCFS 2006, Las Cruces, NM, June 21 23, 2006, pp. 118 129.

[5] C. Cortes, M. Mohri, A. Rastogi and M. Riley, Efficient computation of the
relative entropy of probabilistic automata. 7th Latin American Symposium,
LATIN 2006, Lect. Notes Comput. Sci. 3887, Springer, 2006, pp. 323 336.

[6] M. Domaratzki, J. Shallit and S. Yu, Minimal covers of formal languages.
Developments in Language Theory, DLT 2001, Lect. Notes Comput. Sci. 2295,
Springer, 2001, pp. 319-329.

[7] G. Eisman and B. Ravikumar, Approximate recognition of non-regular
languages by finite automata. Australasian Computer Science Conference,
ASCS 2005, pp. 219-228.

[8] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing Company, 1979.

[9] M. Kappes and C. Kintala, Tradeoffs between reliability and conciness of
deterministic finite automata. J. Automata, Languages and Combinatorics 9
(2004) 281 292.

[10] M. Kappes and F. Niessner, Succinct representations of DFA with different
levels of reliability. Theoret. Comput. Sci. 330 (2005) 299 310.

[11] M.-J. Nederhof, Practical experiments with regular approximation of context-
free languages. Computational Linguistics 26 (2000) 17—44.

[12] Gh. Paun, L. Polkowski and A. Skowron, Rough-set-like approximations of
context-free and regular languages. Proceedings of IPMU 96: Information
Processing and Management of Uncertainty on Knowledge Based Systems, July
1 5, 1996, Granada, Spain, Universidad de Granada, vol. II, pp. 891 895.

[13] Gh. Paun, L. Polkowski and A. Skowron, Rough set approximations of
languages. Fundamenta Informaticae 32 (1997) 149-162.

[14] J. Shallit and Y. Breitbart, Automaticity I: Properties of a measure of
descriptional complexity. J. Comput. System Sci. 53 (1996) 10-25.

[15] S. Yu, Regular languages. In: G. Rozenberg and A. Salomaa (Eds.), Handbook
of Formal Languages, Vol. I, Springer, 1997, pp. 41 110.

18

