
Tarski’s Undefinability Theorem
Brendan Cordy

Tarski’s undefinability theorem states, roughly speaking, that there is no way to express
arithmetical truth in first-order logic. The goal of the following is to give a precise
presentation of the theorem which should be accessible to anyone with some experience
working with first-order logic.

1 The Language of Arithmetic

To begin, we’ll fix a language in which we can formally express properties of the natural numbers.
Our first order language LA has one constant, one unary function symbol, three binary function
symbols, and two binary relation symbols, all of which are given below. An expression in LA will
contain only characters taken from this alphabet of seventeen symbols.

0︸︷︷︸
constant

S + × E︸ ︷︷ ︸
function symbols

= ≤︸ ︷︷ ︸
relation symbols

v ′ () ¬ ∧ ∨ → ∀ ∃︸ ︷︷ ︸
logical symbols

The symbol 0 is the only constant, and the symbol S denotes a unary function, which we’ll write
using postfix notation. This seems a bit odd but it will clean things up later. You can probably
guess the arities of the the other non-logical symbols, which we’ll write using infix notation, as
usual. Note that the symbol v is a logical variable, as are the expressions v′, v′′, v′′′, and so on.
We’ll often make abbreviations as below when writing expressions of LA.

3 := 0SSS v3 := v′′′ ab := aEb

The set N can be made into an LA-structure, which I’ll call N , in a fairly obvious way. The
constant 0 is interpreted as zero, S is interpreted as the successor function, +, ×, and E are inter-
preted as addition, multiplication, and exponentiation respectively, and the interpretations of the
two relation symbols are also exactly what you’d expect them to be.

A sentence of LA will be called true when it’s true in the structure N . Let’s see some examples
of true sentences and false sentences of LA.

∀v1(v1S = v1 + 1) ∀v1(∃v2(v1 = 2× v2)→ ∃v3(v1 = 2
v3))

The first sentence is true in N , by definition of the successor function. The second sentence is
false. It says that every even number is a power of 2. It’s important to recognize that both of these
sentences use only the seventeen symbols above. The abbreviations are just for brevity.

2 Arithmetic Sets and Relations

If ϕ(v1) is a formula in which v1 is the only free variable, then we say that ϕ(v1) expresses the
set of all n ∈ N such that ϕ(n) is true. Equivalently, ϕ(v1) expresses the subset A of the natural
numbers if ϕ(n) is true ⇐⇒ n ∈ A.

Similarly, if ϕ(v1, ..., vk) is a formula in which v1, ..., vk are the only free variables, then ϕ(v1, ..., vk)
expresses the k-ary relation R(x1, ..., xk) if ϕ(n1, ..., nk) is true ⇐⇒ R(n1, ..., nk).

Often it’s not that hard to come up with a formula expressing a given set or relation. The two
formulas ϕ(v1) and ψ(v1, v2) below express the set of prime numbers and the less than relation
respectively.

ϕ(v1) := ∀v2∀v3((v2 × v3 = v1)→ ((v2 = 1 ∧ v3 = v1) ∨ (v2 = v1 ∧ v3 = 1)))

ψ(v1, v2) := (v1 ≤ v2) ∧ ¬(v1 = v2)

When a set of natural numbers or a relation between natural numbers can be expressed by
a formula of LA, we say that it is arithmetic (with emphasis on the third syllable). Note that
a function is a special case of a relation, so the same definition works for functions. To spell it
out again, a function f : N → N is arithmetic if there is a formula ϕ(v1, v2) of LA such that
ϕ(n,m) ⇐⇒ f(n) = m.

3 Concatenation in Base Seventeen

It’s going to be particularly important that a certain function is arithmetic: the function that takes
two natural numbers and concatenates them. We’re going to do this in base seventeen for reasons
that will soon become apparent. Following the usual convention for hexidecimal numbers, our base
seventeen digits will be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F , G.

The base seventeen concatenation function will be denoted ∗ : N2 → N, and written using infix
notation. To give a concrete example of the way it works, one could write: 79B5 ∗ CE5F2 =
79B5CE5F2. The function performs a very simple string manipulation, but it’s a bit tricky to
describe in arithmetic terms. Intuitively, we need to find out how many digits the second number
has, put that many zeros on the end of the first number, and then add the two.

Lemma 3.1 The length function ` : N→ N, where `(n) gives the number of base seventeen digits
of n, is an arithmetic function.

Pf The trick here is to notice that the number of digits in the base b representation of n is given
by the smallest number, k, such that bk > n (try it in base ten).

len(v1, v2) := (v1 < 10
v2) ∧ (∀v3(v1 < 10

v3 → v2 ≤ v3)).

Note that 10 here is the number seventeen written in base seventeen, so the term 10 of LA is a 0
followed by seventeen Ss. Also note that we can use the strict less than relation since we showed
that it was arithmetic above, so all instances can be replaced by the formula ψ given earlier.

There is actually one small problem here. The above formula succeeds in capturing the idea that
the number of digits in the base seventeen representation of n is the smallest power that seventeen

needs to be raised to to exceed n, but this actually fails for n = 0. So to be completely correct, we
need to rewrite the formula as below.

len(v1, v2) := (v1 = 0 ∧ v2 = 1) ∨ ((0 < v1) ∧ (v1 < 10
v2) ∧ (∀v3(v1 < 10

v3 → v2 ≤ v3)))

Thus, we have a formula of LA which expresses the function `, and hence ` is arithmetic. �

Theorem 3.1 The base seventeen concatenation function ∗ : N2 → N is an arithmetic function.

Pf Having established the lemma, we write a formula which expresses the concatenation function
by using the idea described at the end of the second paragraph of this section.

cat(v1, v2, v3) := ∃v4(len(v2, v4) ∧ v1 × 10
v4 + v2 = v3)

Thus, the concatenation function ∗ : N2 → N is an arithmetic function. �

Note that the concatenation function is almost associative, because zero can cause a problem,
namely that ((5C ∗ 0) ∗ 7) = 5C07, but (5C ∗ (0 ∗ 7)) = 5C7. To remedy this, let’s make the
convention that any non-parenthesized sequence of concatenations associates to the left. I’ll now
use the concatenation function ∗ in LA-expressions, with the understanding that every time an
atomic formula x ∗ y = z appears, it can be replaced by the actual LA-formula cat(x, y, z). This
business can get a little bit tricky with multiple concatenations, as in ϕ below.

ϕ := ∃v1∃v2 (v1 ∗ 5F7B ∗ v2 = 455F7B05)

To turn this into an actual LA-formula, one needs to do the fairly standard trick of composition
using the existential quantifier to obtain the formula below, which is indeed a proper LA-formula
once the cats and then the lens are replaced by their defining formulas.

ϕ := ∃v1∃v2∃v3 cat(v1, 5F7B, v3) ∧ cat(v3, v2, 455F7B05)

This is fairly mechanical, but note that the way this formula is written, the concatenation does
in fact associate to the left. For a quick exercise, rewrite it so concatenation associates right instead.
For a very tedious exercise, expand the cats, then the lens, and so on, so that ϕ is written using
only the seventeen symbols of LA and the abbreviations on page one.

4 Gödel Numbers

The reason working in base seventeen is convenient is because LA has precisely seventeen symbols,
so we can put the symbols of LA in one-to-one correspondence with base seventeen digits. Note
the strange choice to begin the correspondence with 1 rather than 0.

0 S + × E = ≤ v ′ () ¬ ∧ ∨ → ∀ ∃
1 0 2 3 4 5 6 7 8 9 A B C D E F G

Converting an LA-expression into a number written in base seventeen by replacing each symbol
with the corresponding base seventeen digit is called encoding. The result of encoding a formula
ϕ is denoted pϕq. Taking a number written in base seventeen and replacing its digits with the
corresponding symbols of LA is known as decoding. The result of decoding the number n is denoted
ϕn. Before moving on, let’s see a few examples of encoding and decoding.

If ϕ := ∀v1(v1S = v1 + 0S), then pϕq = F789780578210A

If n = G788978210000051004788A, then ϕn := ∃v2(v1 + 5 = 2
v2)

Note that the formula ϕn above is a well-formed formula with one free variable. In general, we
can make no assumptions on the sequence of symbols that results from decoding. If one decodes
an arbitrary number, the result will almost certainly not be a well formed formula. Nevertheless,
the encoding scheme still assigns a unique natural number pψq to every LA-formula ψ, and the
encoding and decoding functions are mutually inverse, i.e. ϕpψq = ψ, and pϕnq = n.

Why swap the digits 0 and 1 in our correspondence? Let’s recall that the successor function
is written in postfix notation in this document, so that 5 = 0SSSSS, and the corresponding base
seventeen digits for 0SSSSS are 100000, which is seventeen to the fifth power, written in base
seventeen. In general, this coding scheme encodes the term n as the base seventeen number 10n,
which is particularly convenient.

5 Diagonalization

Still with me? The last and most crucial ingredient we need for Tarski’s theorem is the diagonal
function. Informally, the diagonal function is going to take a natural number n, decode it to produce
an expression in the language LA, which we’ll suppose is well-formed and has one free variable,
substitute n in for that free variable, and then encode the resulting LA-sentence.

n
decode−→ ϕn

substitute−→ ϕn(n)
encode−→ pϕn(n)q

But wait, decoding an arbitrary number produces an arbitrary sequence of LA symbols, so why
should ϕn be a well-formed formula with one free variable? Of course it isn’t in general, but this
won’t actually pose a problem if we’re a little bit careful about how we define the diagonal function.

Definition 5.1 The diagonal function d : N→ N is defined by d(n) = p ∀v1(v1 = n→ ϕn)q.

If it turns out that ϕn is a well-formed formula with one free variable, v1, the sentences ϕn(n)
and ∀v1(v1 = n→ ϕn) are equivalent; each is derivable from the other. This is an important point,
as we’ll need to use it later on. Writing out a formal proof of the equivalence should be a routine
exercise in formal inference for those who’ve studied first-order logic. However, ∀v1(v1 = n→ ϕn)
is an LA-expression even if ϕn is not a well-formed formula with one free variable. This means that
the diagonal function, as defined above, is a well-defined total function.

If we actually do the encoding on the right hand side of the definition, we can write d(n) =
F789785 ∗ pnq ∗ E ∗ pϕnq ∗ A. By definition of the encoding in the last section, pnq = 10n and
pϕnq = n, so we obtain d(n) = F789785 ∗ 10n ∗ E ∗ n ∗A.

Theorem 5.2 The diagonal function d : N→ N is arithmetic.

Pf This is a corollary of Theorem 3.1, using the definition above. To be more explicit, the diagonal
function is expressed by the formula δ written below.

δ(v1, v2) := ∃v3(v3 = 10
v1 ∧ v2 = F789785 ∗ v3 ∗ E ∗ v1 ∗A) �

Definition 5.3 Given S ⊆ N, define S∗ ⊆ N by n ∈ S∗ ⇐⇒ d(n) ∈ S.

S∗ is the set of natural numbers that end up in the set S after being diagonalized, in other
words, S∗ is the preimage of S under the diagonal function.

Lemma 5.4 If S is arithmetic, then so is S∗.

Pf Since S is arithmetic, there is a formula ψ(v1) expressing it, and as we saw earlier, the diagonal
function is expressed by the formula δ. By definition, n ∈ S∗ if d(n) = m and m ∈ S, and therefore
S∗ is expressed by the formula σ(v1) := ∃v2(δ(v1, v2) ∧ ψ(v2)). �

Theorem 5.5 (Tarski) The set of Gödel numbers of true sentences, T , is not arithmetic.

Pf Suppose that T is arithmetic, then there is a formula ϕ(v1) with ϕ(n) ⇐⇒ n ∈ T . Therefore,
¬ϕ(n) ⇐⇒ n ∈ T̃ , where T̃ denotes the complement of T , and by Lemma 5.4, there is a formula
ψ(v1) such that ψ(n) ⇐⇒ n ∈ T̃ ∗. Recall that n ∈ T̃ ∗ means that d(n) ∈ T̃ , so ψ(n) is true when
d(n) is not the Gödel number of a true sentence.

Alright, now here comes the clever bit. Let’s encode the formula ψ(v1), and call its Gödel number
g, that is, let g = pψ(v1)q, and consider the sentence ψ(g). Let’s try to figure out if this sentence
is true, using the definition of ψ.

ψ(g) ⇐⇒ g ∈ T̃ ∗

⇐⇒ d(g) ∈ T̃
⇐⇒ p∀v1(v1 = g → ϕg)q ∈ T̃
⇐⇒ p∀v1(v1 = g → ψ(v1))q ∈ T̃
⇐⇒ pψ(g)q ∈ T̃
⇐⇒ pψ(g)q 6∈ T

Thus, ψ(g) is a true sentence if and only if its own Gödel number is not the Gödel number of a
true sentence, which is a clear contradiction. Therefore, our initial assumption that T is arithmetic
must be false. �

6 Fixed Points & Liars

Where did the clever idea to consider the sentence ψ(g) come from? Well, ψ(n) asserts ‘d(n) is
not the Gödel number of a true sentence’, so ψ(n) is a true sentence exactly when ϕd(n) is not. It
would clearly be absurd then if ψ(n) and ϕd(n) had the same truth value. But the proof above is
by contradiction, so that’s just what we need. We’re looking for a natural number x that satisfies
the ‘equation’ ψ(x)⇔ ϕd(x).

If we, by abuse of notation, write d(x) as pϕx(x)q (recall from the discussion of Definition 5.1
that this is actually not such a terrible offense), then the right hand side of the equation above is
ϕpϕx(x)q, which is just ϕx(x) by definition of the encoding and decoding operations (ϕpϕx(x)q should
be read as ‘the expression whose Gödel number is the Gödel number of the expression ϕx(x)’). So
in spirit, we’re trying to solve ψ(x)⇔ ϕx(x). At this point, it’s not hard to see that g = pψ(x)q is
the number we’re looking for.

In broad strokes, the proof given above uses the diagonal function to create a formalized version
of the well-known liar paradox, by constructing a sentence ψ(g) which asserts its own falsehood.
There’s a great informal introduction to the diagonal function and how it can be used to create
self-referential statements in [4].

The proof of Gödel’s first incompleteness theorem uses a very similar argument, but the vast
majority of the work involved in that proof is devoted to establishing that the set of provable
statements in any recursively axiomatized first-order theory is arithmetic, which is a long and
involved process. From that fact and Tarski’s theorem together, a weakened version of the first
incompleteness theorem immediately follows: There is no recursively axiomatized first-order theory
of arithmetic having the property that the statements provable in that theory are exactly the
statements true in the structure N .

Acknowledgements

This work is based on Raymond Smullyan’s excellent exposition in the second chapter of [3]. He
attributes the Gödel numbering used here to Quine [1], who did it in characteristically minimalist
fashion, using an alphabet of only nine symbols. If you’re interested in reading more about Gödel’s
theorems, I would recommend [6] as an all around great introductory logic book featuring the usual
modern development. If you have some background in logic and a lot of patience or a good teacher
to talk to, the approach in [2] is beautifully clear and efficient. The original presentation of Tarski’s
theorem given by Tarski himself can be found in [5].

References

[1] W. V. Quine. Mathematical Logic. Norton, 1940.

[2] J. Shoenfield. Mathematical Logic. CRC Press, 2001.

[3] R. Smullyan. Gödel’s Incompleteness Theorems. Oxford University Press, 1992.

[4] R. Smullyan. Satan, Cantor, and Infinity: Mind-Boggling Puzzles. Knopf, 1992.

[5] A. Tarski. The concept of truth in formalized languages. In J. Corcoran, editor, Logic, Seman-
tics and Metamathematics. Hackett, 1983. (English language translation of Tarski’s 1936 Der
Wahrheitsbegriff in den Formalisierten Sprachen).

[6] D. Van Dalen. Logic and Structure, 4th Ed. Springer, 2008.

