
Understanding Jordan Normal Form Brendan Cordy

In this article, we’ll try to understand a linear operator on a complex vector space by breaking it
up into smaller, simpler pieces, and discover the Jordan Normal Form.

Decomposing Linear Operators

Consider a finite dimensional vector space U over C with dim(U) > 1. It’s always possible to
write U as a direct sum of two spaces of smaller dimension. Take a basis for U , divide it into two
nonempty subsets, and call the spaces generated by the subsets V and W . Then U = V ⊕W .

If T : U → U is a linear operator, we would like to cleverly choose a basis and divide it so that
T sends every vector in V to V and every vector in W to W , making T |V and T |W well-defined
linear operators on the subspaces V and W . If this is possible, our decomposition of U has broken
the linear operator T into two simpler non-interacting pieces.

Definition: A linear operator T : U → U is called decomposable if T = T |V ⊕ T |W for nontrivial
subspaces V ⊂ U and W ⊂ U with U = V ⊕W . If this is not possible, T is indecomposable.

Subspaces like V and W , which are closed under the action of T , are called T -invariant subspaces.
If you’ve studied eigenvectors, then you already know a bit about invariant subspaces. Eigenspaces
of T are always T -invariant, though not every invariant subspace is an eigenspace.

Example: Let T : C3 → C3 be given by T 〈z1, z2, z3〉 = 〈3z1 + z3, 2z2, z1 − z3〉.

Observe that V = span(〈0, 1, 0〉) is an T -invariant subspace. If we apply T to an arbitrary vector
in V , we have T (c 〈0, 1, 0〉) = c T (〈0, 1, 0〉) = 〈0, 2c, 0〉, which is again in V . Thus, V is T -invariant.
Note that the vector 〈0, 1, 0〉 is an eigenvector of T for the eigenvalue λ = 2. In fact, any one
dimensional T -invariant subspace is the span of an eigenvector.

If we take W = span(〈1, 0, 0〉, 〈0, 0, 1〉), we obtain another T -invariant subspace, but this time W
is not an eigenspace. Let’s check it.

T (c 〈1, 0, 0〉+ d〈0, 0, 1〉) = c T (〈1, 0, 0〉) + d T (〈0, 0, 1〉) = 〈3c+ d, 0, c− d〉 ∈W

Note that W is not an eigenspace of T since the vector 〈3c+ d, 0, c− d〉 is, in general, not a scalar
multiple of 〈c, 0, d〉. Take c = 1 and d = 1 for example, then T (〈1, 0, 1〉) = 〈2, 0, 0〉.

Since V ⊕W = C3, T is decomposable. We have T = T |V ⊕ T |W . Combining a basis of V with a
basis of W , we obtain a basis for C3 in which T can be written as a block diagonal matrix. In this
case, consider the basis β = {〈0, 1, 0〉, 〈1, 0, 0〉, 〈0, 0, 1〉}.

[T ]β =

 2 0 0

0 3 1
0 1 −1


The upper block is the matrix of T |V and the lower block is the matrix of T |W , written in the bases
that we amalgamated to form β. Note the zero entries in the upper-right and lower-left. Nonzero
entries in the lower left would indicate T is sending vectors from V into W , while nonzero entries
in the upper right would indicate T is sending vectors from W into V .



Exercise: Continue decomposing T by finding a T -invariant subspace of T |W .

Example: Let T : C3 → C3 be given by T 〈z1, z2, z3〉 = 〈z1 + z2 + z3, z2 + z3, z3〉.

Again, it’s easy to find a one dimensional T -invariant subspace by inspection, V = span(〈1, 0, 0〉).

This time, if we apply T to a vector in W = span(〈0, 1, 0〉, 〈0, 0, 1〉) we can see that W is not an
invariant subspace.

T (c 〈0, 1, 0〉+ d〈0, 0, 1〉) = c T (〈0, 1, 0〉) + d T (〈0, 0, 1〉) = 〈c+ d, c+ d, d〉 6∈W

Given a T -invariant subspace V , that subspace may or may not have a complementary subspace
W which is also T -invariant. In this example, there is no such complementary invariant subspace
(we’ll show it later). You can try to find a T -invariant subspace W with V ⊕W = C3, but you will
not succeed; the linear operator T is indecomposable.

What does the indecomposability of T tell us about how T can be written as a matrix? Let’s
consider a basis β = {〈1, 0, 0〉, ~w1, ~w2} of C3. Since T (〈1, 0, 0〉) = 〈1, 0, 0〉,

[T ]β =

 1 # #
0 ∗ ∗
0 ∗ ∗


If T is indecomposable, then for any vectors ~w1 and ~w2, the entires marked # in the matrix of T
above cannot both be zero. If they were, then span( ~w1, ~w2) would be a complementary T -invariant
subspace for V , and T could be decomposed.

Exercise: Recall that every linear operator T on a finite dimensional complex vector space has an
eigenvector. Use this to show that if every T -invariant subspace had a complementary invariant
subspace, then every linear operator would be diagonalizable.

If a pair of complementary T -invariant subspaces does exist, can we find them in some systematic
way? The most natural subspaces that come with a linear operator are its kernel and image, and
conveniently enough, these are both T -invariant. So that seems like a good place to start.

To show ker(T ) is a T -invariant subspace, take ~v ∈ ker(T ) and apply T , to obtain T (~v). Is this
vector still in ker(T )? Yes, since T (T (~v)) = T (~0) = ~0. Hence, ker(T ) is invariant under T .

Exercise: Show that im(T ) is also a T -invariant subspace.

Could it be that U = ker(T )⊕ im(T ), so that any T could be decomposed as T |ker(T ) ⊕ T |im(T )?

Example: Consider the linear operator T : C3 → C3 given by T 〈z1, z2, z3〉 = 〈z1, 2z1, z1 + z2〉.

Observe that ker(T ) = {〈0, 0, t〉 | t ∈ C}, and im(T ) = {〈t, 2t, t + s〉 | t, s ∈ C}. We just saw that
both of these subspaces are T -invariant. However, these two subspaces have an intersection which
contains, for example, the vector ~v = 〈0, 0, 1〉. Therefore, C3 6= ker(T )⊕ im(T ).

Unfortunately, the kernel and image of T are not always complementary invariant subspaces.



Eventual Kernel and Eventual Image

Consider the positive integer powers of T . Observe that if ~v ∈ ker(T k) then ~v ∈ ker(T k+1), since
if T k(~v) = ~0 then T k+1(~v) = T (T k(~v)) = T (~0) = ~0. Similarly, if ~v ∈ im(T k+1) then ~v ∈ im(T k)
since if ~v = T k+1(~w) then ~v = T k(T (~w)). Therefore, we have the following inclusions.

ker(T ) ⊆ ker(T 2) ⊆ ker(T 3) ⊆ ... ⊆ ker(T k) ⊆ ker(T k+1) ⊆ ...

im(T ) ⊇ im(T 2) ⊇ im(T 3) ⊇ ... ⊇ im(T k) ⊇ im(T k+1) ⊇ ...

Lemma: If ker(T k) = ker(T k+1), then ker(T k) = ker(T k+`) for all ` > 0.

The idea here is quite simple. If ~v ∈ ker(T k+`), this means k + ` applications of T to ~v will yield
zero, but T k+`(~v) = T k+1T `−1(~v), hence T `−1(~v) ∈ ker(T k+1) and since ker(T k) = ker(T k+1), we
conclude that T k+`−1(~v) = T kT `−1(~v) = ~0. This argument can be repeated to yield T k(~v) = ~0.

k︷ ︸︸ ︷
TTTT

`︷ ︸︸ ︷
TTTT (~v) = ~0

k+1︷ ︸︸ ︷
TTTTT

`−1︷ ︸︸ ︷
TTT (~v) = ~0

k︷ ︸︸ ︷
TTTT

`−1︷ ︸︸ ︷
TTT (~v) = ~0

k+1︷ ︸︸ ︷
TTTTT

`−2︷︸︸︷
TT (~v) = ~0

k︷ ︸︸ ︷
TTTT

`−2︷︸︸︷
TT (~v) = ~0

...

Exercise: Show that if im(T k) = im(T k+1), then im(T k) = im(T k+`) for all ` > 0.

The sequences {ker(Tn)}∞n=1 and {im(Tn)}∞n=1 are both eventually constant. This is because the
kernel and image are both subspaces of U , so if ker(T k) ( ker(T k+1), we have dim(ker(T k)) <
dim(ker(T k+1)). Thus, the sequence {ker(Tn)}∞n=1 is strictly increasing until ker(T k) = ker(T k+1),
and constant from that point on. For the same reasons, {im(Tn)}∞n=1 is eventually constant as
well, and hence there is a smallest positive integer m, bounded by the dimension of U , for which
ker(Tm) = ker(Tm+1), im(Tm) = im(Tm+1), and given any M > m, ker(Tm) = ker(TM ) and
im(Tm) = im(TM ).

The notion of a properly increasing sequence of nested subspaces comes up often enough that it
has a name; mathematicians call it a flag. (If you draw a point, then a line containing that point,
then a plane which contains that line, it looks like a flag on a flagpole.)

Definition: The eventual kernel of T is ker(Tm), and the eventual image of T is im(Tm). These
subspaces of U will be denoted evker(T ) and evim(T ). Note that by the remarks above, we could
also define the eventual kernel of T as ker(T dim(U)) and the eventual image of T as im(T dim(U)).



Lemma: Given any linear operator T : U → U , the two subspaces evker(T ) and evim(T ) are both
T -invariant subspaces of U .

This follows very quickly from the definition of the eventual kernel and image. Let ~v ∈ evker(T ).
Because Tm(~v) = ~0 and ker(Tm) = ker(Tm+1), we have Tm(T (~v)) = Tm+1(~v) = ~0, and therefore
T (~v) ∈ ker(Tm) = evker(T ). Thus, evker(T ) is T -invariant.

Similarly, if ~v ∈ evim(T ) then there is a ~w ∈ U with ~v = Tm(~w), hence T (~v) = Tm+1(~w), but
im(Tm+1) = im(Tm), so T (~v) ∈ im(Tm) = evim(T ) and evim(T ) is T -invariant.

Now, we come to the first of our three main results, which provides two complementary invariant
subspaces that can be used to decompose any linear operator.

Theorem I: Let T : U → U be a linear operator. The eventual kernel of T and the eventual image
of T are complementary T -invariant subspaces of U . That is, U = evker(T )⊕ evim(T ), and T can
be decomposed as T = T |evker(T ) ⊕ T |evim(T ).

We have already seen that evker(T ) and evim(T ) are T -invariant subspaces. Furthermore, by the
rank-nullity theorem applied to Tm,

dim(evker(T )) + dim(evim(T )) = dim(ker(Tm)) + dim(im(Tm)) = dim(U).

To conclude that U = evker(T )⊕ evim(T ) and complete the proof, we need to show that evker(T )
and evim(T ) have no nonzero vectors in their intersection. Let ~v ∈ evim(T ), that is, ~v = Tm(~w). If
~v ∈ evker(T ) also, we have ~0 = Tm(~v) = Tm(Tm(~w)) = T 2m(~w). However, ker(T 2m) and ker(Tm)
are equal, by definition of m, so ~w ∈ ker(Tm). Therefore, ~v = Tm(~w) = ~0. �

This power of this result becomes clear when it’s applied, not to the linear operator T , but to the
linear operator T −λI, for some eigenvalue λ. In doing this, we can, from any eigenvalue, construct
a pair of complementary T -invariant subspaces.

Exercise: Show that a subspace is T − λI -invariant iff it is T -invariant.

Example: Let T : C3 → C3 with T 〈z1, z2, z3〉 = 〈−9z1 − 6z2 + z3, 12z1 + 9z2 − 2z3, z1 + z2 + z3〉.

Let’s try to find a decomposition of T , using the theorem above. There are no obvious T -invariant
subspaces, but if you look for eigenvalues and eigenvectors, you’ll find that λ = 2 is an eigenvalue,
with an eigenvector ~v = 〈1,−2,−1〉. Now consider the linear operator S = T − 2I. Let’s write out
the matrix of this operator in the standard basis.

[S] =

 −11 −6 1
12 7 −2
1 1 −1


Since dim(C3) = 3, we know that evker(S) = ker(S3) and evim(S) = im(S3), both of which can
be easily calculated by cubing the matrix above.

[S3] =

−250 −125 0
250 125 0
0 0 0





Thus, evker(S) = {〈z1, z2, z3〉 | z2 = −2z1}, and evim(S) = {〈z1, z2, z3〉 | z2 = −z1 and z3 = 0}.

This leads us to consider the basis β = {〈1,−2, 0〉, 〈0, 0, 1〉, 〈1,−1, 0〉} of C3 obtained by amalga-
mating a basis for evker(S) and a basis for evim(S). If we write the matrix of T in this basis, then
after a little calculation, we obtain the block diagonal matrix below.

[T ]β =

 3 1 0
−1 1 0

0 0 −3


We have decomposed T as a direct sum of two linear operators on two invariant (both S-invariant
and T -invariant, see the exercise above) subspaces of C3. The subspace evker(S) = evker(T − 2I)
is called the generalized eigenspace of T for λ = 2, and vectors in this space are called generalized
eigenvectors for λ = 2.

We now have a general strategy for decomposing linear operators. Find an eigenvalue λ, and then
calculate V = evker(T − λI) and W = evim(T − λI). These will be complementary T -invariant
subspaces. If we continue by restricting our attention to evim(T − λI) and repeating this process,
will we be able to keep going until we have one invariant subspace for each distinct eigenvalue?

Theorem II: Suppose T : U → U has eigenvalues λ1, λ2, ..., λk. Then U is the direct sum of the
generalized eigenspaces of T , that is, U = evker(T − λ1I)⊕ evker(T − λ2I)⊕ ...⊕ evker(T − λkI).

First, let’s show the generalized eigenvectors of T span U by induction. Let W be a T -invariant
subspace of U , of dimension n. If n = 1, then T |W has exactly one eigenvalue λ, which is also an
eigenvalue of T , and W is one dimensional, so U = ker(T − λI) = evker(T − λI).

Suppose that for any invariant subspace W of dimension less than n, the generalized eigenvectors
of T |W span W . Let λ be any eigenvalue of T . We have that U = evker(T − λI)⊕ evim(T − λI)
by Th.I, and evker(T − λI) 6= {~0} since it contains a nonzero eigenvector, hence the dimension of
evim(T − λI) is less than n. Because evim(T − λI) is T -invariant, the generalized eigenvectors of
T |evim(T−λI) span evim(T − λI) by induction, and any generalized eigenvector of T |evim(T−λI) is a
generalized eigenvector of T . The subspace evker(T − λI) is spanned by generalized eigenvectors
of T by definition, so U = evker(T−λI)⊕evim(T−λI) is spanned by generalized eigenvectors of T .

Next, we need to show that the generalized eigenspaces for distinct eigenvalues intersect only at ~0.
Suppose that ~v ∈ evker(T − λ1I) ∩ evker(T − λ2I) is nonzero. After some number of applications
(say p) of T − λ1I to ~v, the result is zero, but this means (T − λ1I)p−1(~v) (which is nonzero, by
definition of p) is an eigenvector of T , not just a generalized eigenvector.

(T − λ1I)(T − λ1I) ... (T − λ1I)(~v) = ~0

(T − λ1I)((T − λ1I)p−1(~v)) = ~0

Moreover, this vector (T −λ1I)p−1(~v) is still in evker(T −λ2I). Why? We began by assuming that
~v is in evker(T −λ2I), hence so is its scalar multiple λ1~v. T (~v) is also in there, because generalized
eigenspaces are T -invariant. Thus, the difference T (~v) − λ1~v = (T − λ1I)(~v) is in evker(T − λ2I)
as well. This argument shows that applying T − λ1I to any vector in evker(T − λ2I) always yields
another vector in evker(T − λ2I), and hence (T − λ1I)p−1(~v) ∈ evker(T − λ2I).



Let ~w = (T −λ1I)p−1(~v). We’ve seen ~w is a nonzero eigenvector of T with eigenvalue λ1 which is in
evker(T − λ2I). If we apply T − λ2I to ~w, then T (~w)− λ2I(~w) = λ1 ~w− λ2 ~w = (λ1 − λ2)~w. Thus,
applying T − λ2I to ~w multiplies it by the nonzero scalar λ1 − λ2, but then ~w 6∈ evker(T − λ2I), a
contradiction. Hence, there cannot be a nonzero ~v ∈ evker(T − λ1I) ∩ evker(T − λ2I). �

Therefore, a linear operator with k distinct eigenvalues will have a decomposition with k invariant
subspaces (the generalized eigenspaces), and hence can be written as a block diagonal matrix with
k blocks. On each of the generalized eigenspaces, the restriction of T will have only one eigenvalue,
so what can we say about a linear operator with only one eigenvalue?

Nilpotent Operators & Orbits

Example: Consider the operator T : C3 → C3 given by T 〈z1, z2, z3〉 = 〈z1 + z2 + z3, z2 + z3, z3〉.

We studied this example earlier and saw T (〈1, 0, 0〉) = 〈1, 0, 0〉, so λ = 1 is an eigenvalue of T .
In fact, it’s the only eigenvalue of T . So, consider the operator S = T − I, whose matrix in the
standard basis is given below.

[S] =

 0 1 1
0 0 1
0 0 0


It’s easy to see that [S3] is a zero matrix, and therefore evker(S) = C3 and evim(S) = {~0}. Note
that evker(S) = C3 means precisely that S is nilpotent.

In fact, if T is any linear operator with only one eigenvalue λ, then S = T − λI must be nilpotent.
Why? If T has λ as its only eigenvalue, then by Th.II above, U = evker(S), so S is nilpotent.

Lemma: Let S : U → U be a nilpotent linear operator, and let ~v be a vector with Sk(~v) = {~0}
but Sk−1(~v) 6= {~0}. Then the set β = {~v, S(~v), ..., Sk−1(~v)} is linearly independent.

If c0~v+ c1S(~v) + ...+ ck−1S
k−1(~v) = ~0, then by repeated applications of S, we can force all but one

term to be zero.

c0~v + c1S(~v) + ...+ ck−1S
k−1(~v) = ~0

c0S
k−1(~v) + c1S

k(~v) + ...+ ck−1S
2k−1(~v) = ~0

c0S
k−1(~v) + c1~0 + ...+ ck−1~0 = ~0

c0S
k−1(~v) = ~0

Thus, c0 = 0, because Sk−1(~v) 6= {~0} by assumption. Now that c0 = 0 we can apply Sk−2 to show
c1 = 0. Repeating this argument k times will show each ci must be zero.

c0~v + c1S(~v) + ...+ ck−1S
k−1(~v) = ~0

~0 + c1S
k−1(~v) + c2S

k(~v) + ...+ ck−1S
2k−2(~v) = ~0

c1S
k−1(~v) + c2~0 + ...+ ck−1~0 = ~0

c1S
k−1(~v) = ~0



Definition: The set β = {~v, S(~v), S2(~v), ..., Sm−1(~v)} is the orbit of ~v under S, and the subspace
spanned by this orbit is called the S-cyclic subspace generated by ~v.

Exercise: Show that the S-cyclic subspace generated by any vector ~v is S-invariant.

Example: Consider the operator T : C3 → C3 given by T 〈z1, z2, z3〉 = 〈z1 + z2 + z3, z2 + z3, z3〉.

What does the lemma above tell us about T? In the last example, we defined S = T −I, and found
S3 = 0. To apply the lemma, we need a vector ~v such that S2(~v) 6= ~0.

[S2] =

 0 0 1
0 0 0
0 0 0


Thus, ~v = 〈0, 0, 1〉 is such a vector. Note that S(~v) = 〈1, 1, 0〉, S2(~v) = 〈1, 0, 0〉, and S3(~v) = 〈0, 0, 0〉,
so the set β = {S2(~v), S(~v), ~v} is indeed linearly independent, as we saw in the lemma above. In
this case, the S-cyclic subspace generated by ~v is all of C3. Observe that S acts on the basis β in a
very simple way. It sends the leftmost basis vector to zero, and shifts the others one position left.

[S]β =

 0 1 0
0 0 1
0 0 0


Note β = {S2(~v), S(~v), ~v} is ordered with higher powers of S on the left, so that the matrix above
is upper triangular. In the opposite order, [S]β will be lower triangular. What is the matrix of T
written in this basis? Well, S = T − I, so T = S + I.

[T ]β = [S]β + [I]β =

 0 1 0
0 0 1
0 0 0

 +

 1 0 0
0 1 0
0 0 1

 =

 1 1 0
0 1 1
0 0 1


At this point we can see the geometric significance of Jordan cells. Every Jordan cell is a sum of two
actions on a T -invariant subspace: A ‘left shift’ which corresponds a vector being pushed along its
orbit under S = T −λI, and a multiple of the identity which corresponds to scaling by a factor of λ.

Theorem III: Let S : U → U be a nilpotent linear operator. There is a basis for U which is made
up of orbits of vectors under S.

We can easily find a set of orbits that span U . Take any basis β = {v1, v2, ..., vn} of U , and for each
vi, repeatedly apply S until the result is zero, and add these vectors to β (the orbits have finite
length since S is nilpotent). The result will span U , but in general will not be linearly independent.

Now we need to remove vectors from our inflated basis β to whittle it back down to being linearly
independent, while maintaining the key property of β, that it is a set of orbits, or equivalently, it is
closed under S. The notation gets a bit cumbersome if we try to do this in general, so let’s suppose
that β = {~v1, ~v2, ~v3} is a basis for U , and after adding in the orbits of each of these vectors, we
obtain β = {~v1, S(~v1), S

2(~v1), ~v2, S(~v2), ~v3, S(~v3), S
2(~v3), S

3(~v3)}. It will be clear that the process
used to reduce β to a linearly independent set works in general.



If the set β is not linearly independent, there must be some linear relation between the vectors in
β. Let’s take aS(~v1) + bS(~v2) + cS2(~v3) = ~0 as our linear relation. Now, apply S as many times as
we can before everything vanishes. This will reduce any linear relation to one involving only the
final vectors in the orbits. In this case, we obtain aS2(~v1) + bS3(~v3) = ~0.

Factoring out the largest possible power of S, we obtain S2(a~v1+bS(~v3)) = ~0. The result is always a
power of S (possibly zero) applied to a linear combination in which at least one of the initial vectors
in an orbit occurs, since if not, we could factor out a larger power of S. We now replace the orbit of
that initial vector, in this case {~v1, S(~v1), S

2(~v1)}, with the orbit {a~v1 + bS(~v3), S(a~v1 + bS(~v3))}.
This shortens one of the orbits, but leaves the span of β unchanged. Why? Note that the final
vector which was removed can be written as a linear combination of the other vectors in β, by the
linear relation at the end of the preceding paragraph. Furthermore, note that the second vector in
the new orbit, S(a~v1+bS(~v3)), can be written as aS(~v1)+bS2(~v3), and since that vector and S2(~v3)
are in β, S(~v1) is still in the span of β. In this way, all vectors in the orbit which was removed will
still be in the span of β.

Note that it’s possible we will end up removing an orbit completely. For example, if vi ∈ β had
an orbit of length one, and we had a linear relation ~vi + aS(~vj) + bS2( ~vk) = ~0. In this case, if we
follow the procedure above, we would simply remove vi. In general, any linear relation can be used
to reduce the number of vectors in β by one by replacing one of the orbits with another of shorter
length, while preserving span(β). This ‘whittling down’ process can be repeated until no linear
relations exist between vectors in β, at which point β is a basis for U . �

Exercise: Write a rigorous proof of Th.III. (Exercise in good notation & patience.)

With Th.III verified, we have now have a complete argument for the existence of the Jordan normal
form of any linear operator T on Cn. Let’s review the work we did to get here.

• T can be written as a direct sum of linear operators on generalized eigenspaces, which are
invariant subspaces of the form evker(T −λI) (by Th.II). This means the matrix of T is block
diagonal, with one block per generalized eigenspace.

• On the generalized eigenspace for the eigenvalue λ, S = T −λI is nilpotent (by Th.II), hence
there is a basis β for evker(T − λI) consisting of orbits of vectors under S (by Th.III).

• The matrix of S in the basis β (ordered with vectors in the same orbit grouped together, and
higher powers of S appearing first in each orbit) has [S]i,i+1 = 1 when the i-th and (i+ 1)-th
vector in β are in the same orbit, and all other entries are zeros. The matrix of T |ker(T−λI)
in this basis is then obtained by placing λ’s on the diagonal.

The indecomposable operators that T is built up from, which got us started on this quest in the
first place, can now be clearly seen. They are the restrictions of T to each S-cyclic subspace, that
is, the restriction of T to the span of an orbit. These are known as Jordan cells.

Exercise: Show that the restriction of T to a Jordan cell is indecomposable. (Hint: First reduce
the problem to showing the restriction of S = T − λI to a Jordan cell is indecomposable, and then
consider a vector in ker(Sm) outside of ker(Sm−1), where m is the length of the orbit defining the
Jordan cell.)



Example: Consider T : C4 → C4 defined by the matrix below (written in the standard basis for
C4). This linear operator has two distinct eigenvalues, λ1 = 2 and λ2 = 3.

[T ] =


2 −1 0 1
0 3 −1 0
0 1 1 0
0 −1 0 3


Let’s use our results above to write T in Jordan normal form. Since λ1 = 2, we should consider
S = T − 2I. Since S operates on a space of dimension four, we have evker(S) = ker(S4).

[S] =


0 −1 0 1
0 1 −1 0
0 1 −1 0
0 −1 0 1

 [S4] =


0 −2 1 1
0 0 0 0
0 0 0 0
0 −2 1 1


So evker(S) = {〈z1, z2, z3, z4〉 | 2z2 = z3 + z4}, evim(S) = {〈z1, z2, z3, z4〉 | z1 = z4, z2 = 0, z3 = 0}.
Take {〈1, 0, 0, 0〉, 〈0, 1, 2, 0〉, 〈0, 1, 0, 2〉} as a basis for evker(S), {〈1, 0, 0, 1〉} as a basis for evim(S),
and amalgamate them to form β = {〈1, 0, 0, 0〉, 〈0, 1, 2, 0〉, 〈0, 1, 0, 2〉, 〈1, 0, 0, 1〉}. The matrix of T
is this basis has two blocks, and is given below.

[T ]β =


2 −1 1 0

0 3
2

5
2 0

0 −1
2

1
2 0

0 0 0 3


But we can do better, and get the Jordan normal form. By Theorem III, we should be able to find
a basis of evker(S) composed of orbits under T . To do this, we look at smaller powers of S.

[S2] =


0 −2 1 1
0 0 0 0
0 0 0 0
0 −2 1 1

 [S3] =


0 −2 1 1
0 0 0 0
0 0 0 0
0 −2 1 1


Thus, evker(S) = ker(S2), which has dimension three, and ker(S) = {〈z1, z2, z3, z4〉 | z2 = z3 = z4},
which has dimension two. Therefore, there must be a basis of evker(S) consisting of two orbits,
{~v1, S(~v1)} and {~v2}, where ~v1 ∈ ker(S2) but not ker(S), and ~v2 ∈ ker(S) is not in span(~v1, S(~v1)).

Examining ker(S) and ker(S2), we can find suitable vectors ~v1 and ~v2. Take ~v1 = 〈0, 1, 2, 0〉, then
S(~v1) = 〈−1,−1,−1,−1〉. For ~v2, we need a vector in ker(S) which is not in span(~v1, S(~v1)). The
vector ~v2 = 〈1, 0, 0, 0〉 is an easy choice. Thus, {〈−1,−1,−1,−1〉, 〈0, 1, 2, 0〉, 〈1, 0, 0, 0〉} is a basis
for evker(S) (with orbits grouped together, and higher powers of S on the left), and putting this
together with evim(S), we obtain γ = {〈−1,−1,−1,−1〉, 〈0, 1, 2, 0〉, 〈1, 0, 0, 0〉, 〈1, 0, 0, 1〉}, a basis
in which T is written as a direct sum of Jordan cells.

[T ]γ =


2 1 0 0
0 2 0 0

0 0 2 0

0 0 0 3





Exercise: Suppose T : C4 → C4 is a linear operator such that S = T + 3I is nilpotent, ker(S) has
dimension one, ker(S2) has dimension three, and ker(S3) has dimension four. How many orbits
are in the Jordan basis for T? Write the Jordan normal form of T .

Exercise: Consider T : C3 → C3 defined by T 〈z1, z2, z3〉 = 〈z1 + z2 + z3, z2 + z3, z3〉. We have
studied this example extensively, and noted that ker(S2) 6= C3 for S = T − I. Use this fact to
prove that T must be indecomposable.

Constructing a Jordan Basis

In the last example, it was easy enough find a basis of orbits for S by following our nose, and we
know such a basis always exists by Th. III. But when it comes to constructing one, no general
strategy was given. It would be nice to have some procedure which, given any nilpotent operator
S : U → U , will build a basis of orbits.

To illustrate why this is not such a simple task, suppose we have a nilpotent operator S : U → U for
which ker(S4) = U and dim(ker(S4)) = dim(ker(S3))+2. If we take a vector ~v ∈ ker(S4) which is
not in ker(S3), then we know that the orbit {~v, S(~v), ... , S3(~v)} is a linearly independent set. The
problem arises when we try to add another orbit. We need one more vector ~w ∈ ker(S4) which is
not in ker(S3), but how should we pick ~w so that the union of the two orbits {~v, S(~v), ... , S3(~v)}
and {~w, S(~w), ... , S3(~w)} is linearly independent?

Even if we chose ~w so that {~v, ~w} is linearly independent, it may be ~w = ~v+~u, where, for example,
S2(~u) = 0. If this happens, S2(~w) = S2(~v+~u) = S2(~v) +S2(~u) = S2(~v), and the two orbits collide.
We need some way of ensuring our ~w ∈ ker(S4) does not differ from ~v by some ~u ∈ ker(Sk) for
any k < 4. We can solve this problem by identifying vectors in ker(S4) that differ by an element
of ker(S3), i.e., by working in the quotient space ker(S4)/ker(S3).

Let S : U → U be a nilpotent linear operator on a finite dimensional vector space. To construct a
basis β of U composed of orbits under S, i.e., a Jordan basis, we can do the following.

1. Find the least m such that ker(Sm) = U , and consider the space Qm = ker(Sm)/ker(Sm−1)
as well as the quotient map φm : ker(Sm)→ Qm.

2. Find a basis of Qm, and take preimages under φm to obtain αm = {v1, v2, ..., vk} ∈ ker(Sm).
Let βm = αm.

3. Consider Qm−1 = ker(Sm−1)/ker(Sm−2) and the quotient map φm−1 : ker(Sm−1)→ Qm−1.
Let βm−1 = {S(v1), S(v2), ... , S(vk)} be obtained by applying S to each vector in βm. Find
the image of each vector in βm−1 under φm−1, and extend the set so obtained to a basis of
Qm−1. For every new vector added in this extension, find a preimage for it under φm−1, and
call these preimages αn−1 = {w1, w2, ... , wk}. Enlarge βm−1 by adding these preimages, to
obtain βm−1 = {S(v1), S(v2), ... , S(vk), w1, w2, ... , wk}.

4. Repeat step 3 above for Qm−2, Qm−3, and so on, until β1 has been constructed and extended.
At this point, β = α1 ∪ α2 ∪ ... ∪ αm will be the desired (but unordered) basis of orbits.

As we saw in the example above, this procedure is typically not necessary when the dimension of
U is small, but now we can rest assured that it’s possible to constructively produce a Jordan basis
for any linear operator T on any complex vector space U .


